Get smarter, faster. Subscribe to our daily newsletter.
NASA-funded scientist says 'MEGA drive' could enable interstellar travel
The drive would provide enough thrust for a spacecraft to travel near the speed of light using only electricity, says physicist Jim Woodward.

Illustration of SSI Lambda
- The thrust system utilizes piezoelectric crystals, which vibrate extremely rapidly when exposed to electric current.
- Early tests have yielded mixed results, but Woodward and his colleagues say a recent breakthrough related to the design of the thruster mount greatly increased thrust.
- Independent teams of scientists will likely test Woodward's design after the pandemic.
From health concerns to funding, there's no shortage of obstacles preventing humans from traveling beyond our solar system. But the main obstacle is propulsion: Our spacecraft are simply too slow and too reliant on fuel to realistically make a voyage to Alpha Centauri, the closest star to our Sun.
So, what do we need? Something like a reactionless drive — an engine that moves a spacecraft without exhausting a finite stock of propellant. So far, such a device only exists in science fiction. But for the past few decades, physicist Jim Woodward has been trying to change that.
The 79-year-old physics professor has developed what a thruster design that he hopes will serve as a proof of concept for how humans can someday achieve interstellar travel. Called the Mach-effect gravitational assist (MEGA) drive, the device only requires a source of electricity to achieve thrust.
Early tests have shown mixed results. Woodward himself was only able to demonstrate miniscule amounts of thrust, while other teams reported little to no thrust when trying to replicate his experiments. Still, the design intrigued NASA enough to award Woodward $625,000 in funding between 2017 and 2018.
What's more, in 2019 Woodward and his collaborator and fellow physicist Hal Fearn reported a major breakthrough after redesigning the thruster's mount — a tweak that produced "more than 100 micronewtons, orders of magnitude larger than anything Woodward had ever built before," as a recent feature in Wired notes.
(To be sure, the level of thrust we're talking about is barely enough to visibly move an object across a table. But if the results are confirmed, it would suggest the technology could be scaled up.)
A heterodox view of inertia
Woodward's system is based on ideas that 19th-century physicist Ernst Mach proposed about inertia, which is an object's tendency to stay at rest unless acted upon.
In simple terms, Mach's principle argues that distant matter causes local inertial effects. So, a star in a far away galaxy has some effect on the inertia you encounter when you push a shopping cart. That's the idea, anyway. (Woodward gives a comprehensive breakdown of his views on Mach's principle in this blog post.)
In the 20th century, Albert Einstein incorporated Mach's ideas into his theory of general relativity, essentially arguing that gravity and inertia are fundamentally linked. But the broader physics community later rejected this view of inertia, largely because of a 1961 paper that showed inertia to be unrelated to the gravitational influence of distant matter.
Still, Woodward believes Einstein had it right all along, and that, under this framework of inertia, it's possible to develop propulsion systems that require only an electrical charge, not fuel. The key element of his thruster is a stack of piezoelectric crystals, which produces an alternating electric field when voltage is applied to it, as Woodward explained:
"Piezoelectric crystals are electromechanical devices, which means that when you apply the voltage, they mechanically expand & contract depending upon the sign of the voltage. So by applying a voltage, you're causing an E/c² energy fluctuation in the stack no matter what they do mechanically, and you're also producing an acceleration because of the changing dimensions of the stack due due to electromechanical effects, which also causes the acceleration required couple the device to the large gravitational field."
"The trick is timing the energy fluctuations and mechanical oscillations correctly, which requires using two frequencies — at the first and second harmonics, and it's the second harmonic that actually produces thrust."
Woodward and his colleagues have even drawn up plans for a spacecraft that would utilize the MEGA drive. Called the SSI Lambda, the craft would feature piezoelectric crystals and a small nuclear reactor to produce electricity.
"The SSI Lambda probe using MEGA drive thrusters is a truly propellantless-propulsion spacecraft," the team wrote of the design in its report to NASA. "It can travel at speeds up to the speed of light in a vacuum with only consumption of electric power. No other method for travelling to the stars and braking into the target system has been put forward to date, which also has credible physics to back it up."
High-reward work
After the COVID-19 pandemic settles down, other scientists and engineers hope to put Woodward's designs to the test. The results of those experiments should reveal whether he's onto something. To some experts in the field, the odds are slim. But that doesn't mean it's not worth investigating.
"I'd say there's between a 1-in-10 and 1-in-10,000,000 chance that it's real, and probably toward the higher end of that spectrum," Mike McDonald, an aerospace engineer at the Naval Research Laboratory in Maryland, told Wired. "But imagine that one chance; that would be amazing. That's why we do high-risk, high-reward work. That's why we do science."
- New space dangers found by NASA in astronaut blood - Big Think ›
- Michio Kaku forecasts the future of space travel - Big Think ›
- Space travel could create language unintelligible to people on Earth ... ›
- Fast superhighway through the Solar System discovered - Big Think ›
How New York's largest hospital system is predicting COVID-19 spikes
Northwell Health is using insights from website traffic to forecast COVID-19 hospitalizations two weeks in the future.
- The machine-learning algorithm works by analyzing the online behavior of visitors to the Northwell Health website and comparing that data to future COVID-19 hospitalizations.
- The tool, which uses anonymized data, has so far predicted hospitalizations with an accuracy rate of 80 percent.
- Machine-learning tools are helping health-care professionals worldwide better constrain and treat COVID-19.
The value of forecasting
<img type="lazy-image" data-runner-src="https://assets.rebelmouse.io/eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJpbWFnZSI6Imh0dHBzOi8vYXNzZXRzLnJibC5tcy8yNTA0Njk2OC9vcmlnaW4uanBnIiwiZXhwaXJlc19hdCI6MTYyMzM2NDQzOH0.rid9regiDaKczCCKBsu7wrHkNQ64Vz_XcOEZIzAhzgM/img.jpg?width=980" id="2bb93" class="rm-shortcode" data-rm-shortcode-id="31345afbdf2bd408fd3e9f31520c445a" data-rm-shortcode-name="rebelmouse-image" data-width="1546" data-height="1056" />Northwell emergency departments use the dashboard to monitor in real time.
Credit: Northwell Health
<p>One unique benefit of forecasting COVID-19 hospitalizations is that it allows health systems to better prepare, manage and allocate resources. For example, if the tool forecasted a surge in COVID-19 hospitalizations in two weeks, Northwell Health could begin:</p><ul><li>Making space for an influx of patients</li><li>Moving personal protective equipment to where it's most needed</li><li>Strategically allocating staff during the predicted surge</li><li>Increasing the number of tests offered to asymptomatic patients</li></ul><p>The health-care field is increasingly using machine learning. It's already helping doctors develop <a href="https://care.diabetesjournals.org/content/early/2020/06/09/dc19-1870" target="_blank">personalized care plans for diabetes patients</a>, improving cancer screening techniques, and enabling mental health professionals to better predict which patients are at <a href="https://healthitanalytics.com/news/ehr-data-fuels-accurate-predictive-analytics-for-suicide-risk" target="_blank" rel="noopener noreferrer">elevated risk of suicide</a>, to name a few applications.</p><p>Health systems around the world have already begun exploring how <a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7315944/" target="_blank" rel="noopener noreferrer">machine learning can help battle the pandemic</a>, including better COVID-19 screening, diagnosis, contact tracing, and drug and vaccine development.</p><p>Cruzen said these kinds of tools represent a shift in how health systems can tackle a wide variety of problems.</p><p>"Health care has always used the past to predict the future, but not in this mathematical way," Cruzen said. "I think [Northwell Health's new predictive tool] really is a great first example of how we should be attacking a lot of things as we go forward."</p>Making machine-learning tools openly accessible
<p>Northwell Health has made its predictive tool <a href="https://github.com/northwell-health/covid-web-data-predictor" target="_blank">available for free</a> to any health system that wishes to utilize it.</p><p>"COVID is everybody's problem, and I think developing tools that can be used to help others is sort of why people go into health care," Dr. Cruzen said. "It was really consistent with our mission."</p><p>Open collaboration is something the world's governments and health systems should be striving for during the pandemic, said Michael Dowling, Northwell Health's president and CEO.</p><p>"Whenever you develop anything and somebody else gets it, they improve it and they continue to make it better," Dowling said. "As a country, we lack data. I believe very, very strongly that we should have been and should be now working with other countries, including China, including the European Union, including England and others to figure out how to develop a health surveillance system so you can anticipate way in advance when these things are going to occur."</p><p>In all, Northwell Health has treated more than 112,000 COVID patients. During the pandemic, Dowling said he's seen an outpouring of goodwill, collaboration, and sacrifice from the community and the tens of thousands of staff who work across Northwell.</p><p>"COVID has changed our perspective on everything—and not just those of us in health care, because it has disrupted everybody's life," Dowling said. "It has demonstrated the value of community, how we help one another."</p>3,000-pound Triceratops skull unearthed in South Dakota
"You dream about these kinds of moments when you're a kid," said lead paleontologist David Schmidt.
Excavation of a triceratops skull in South Dakota.
- The triceratops skull was first discovered in 2019, but was excavated over the summer of 2020.
- It was discovered in the South Dakota Badlands, an area where the Triceratops roamed some 66 million years ago.
- Studying dinosaurs helps scientists better understand the evolution of all life on Earth.
Credit: David Schmidt / Westminster College
<p style="margin-left: 20px;">"We had to be really careful," Schmidt told St. Louis Public Radio. "We couldn't disturb anything at all, because at that point, it was under law enforcement investigation. They were telling us, 'Don't even make footprints,' and I was thinking, 'How are we supposed to do that?'"</p><p>Another difficulty was the mammoth size of the skull: about 7 feet long and more than 3,000 pounds. (For context, the largest triceratops skull ever unearthed was about <a href="https://www.tandfonline.com/doi/abs/10.1080/02724634.2010.483632" target="_blank">8.2 feet long</a>.) The skull of Schmidt's dinosaur was likely a <em>Triceratops prorsus, </em>one of two species of triceratops that roamed what's now North America about 66 million years ago.</p>Credit: David Schmidt / Westminster College
<p>The triceratops was an herbivore, but it was also a favorite meal of the T<em>yrannosaurus rex</em>. That probably explains why the Dakotas contain many scattered triceratops bone fragments, and, less commonly, complete bones and skulls. In summer 2019, for example, a separate team on a dig in North Dakota made <a href="https://www.nytimes.com/2019/07/26/science/triceratops-skull-65-million-years-old.html" target="_blank">headlines</a> after unearthing a complete triceratops skull that measured five feet in length.</p><p>Michael Kjelland, a biology professor who participated in that excavation, said digging up the dinosaur was like completing a "multi-piece, 3-D jigsaw puzzle" that required "engineering that rivaled SpaceX," he jokingly told the <a href="https://www.nytimes.com/2019/07/26/science/triceratops-skull-65-million-years-old.html" target="_blank">New York Times</a>.</p>Morrison Formation in Colorado
James St. John via Flickr
Triceratops illustration
Credit: Nobu Tamura/Wikimedia Commons |
Dark matter axions possibly found near Magnificent 7 neutron stars
A new study proposes mysterious axions may be found in X-rays coming from a cluster of neutron stars.
A rendering of the XMM-Newton (X-ray multi-mirror mission) space telescope.
Are Axions Dark Matter?
<span style="display:block;position:relative;padding-top:56.25%;" class="rm-shortcode" data-rm-shortcode-id="5e35ce24a5b17102bfce5ae6aecc7c14"><iframe type="lazy-iframe" data-runner-src="https://www.youtube.com/embed/e7yXqF32Yvw?rel=0" width="100%" height="auto" frameborder="0" scrolling="no" style="position:absolute;top:0;left:0;width:100%;height:100%;"></iframe></span>Put on a happy face? “Deep acting” associated with improved work life
New research suggests you can't fake your emotional state to improve your work life — you have to feel it.
What is deep acting?
<img type="lazy-image" data-runner-src="https://assets.rebelmouse.io/eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJpbWFnZSI6Imh0dHBzOi8vYXNzZXRzLnJibC5tcy8yNTQ1NDk2OS9vcmlnaW4uanBnIiwiZXhwaXJlc19hdCI6MTYxNTY5MzA0Nn0._s7aP25Es1CInq51pbzGrUj3GtOIRWBHZxCBFnbyXY8/img.jpg?width=1245&coordinates=333%2C-1%2C333%2C-1&height=700" id="ddf09" class="rm-shortcode" data-rm-shortcode-id="9dc42c4d6a8e372ad7b72907b46ecd3f" data-rm-shortcode-name="rebelmouse-image" data-width="1245" data-height="700" />Arlie Russell Hochschild (pictured) laid out the concept of emotional labor in her 1983 book, "The Managed Heart."
Credit: Wikimedia Commons
<p>Deep and surface acting are the principal components of emotional labor, a buzz phrase you have likely seen flitting about the Twittersphere. Today, "<a href="https://www.bbc.co.uk/bbcthree/article/5ea9f140-f722-4214-bb57-8b84f9418a7e" target="_blank">emotional labor</a>" has been adopted by groups as diverse as family counselors, academic feminists, and corporate CEOs, and each has redefined it with a patented spin. But while the phrase has splintered into a smorgasbord of pop-psychological arguments, its initial usage was more specific.</p><p>First coined by sociologist Arlie Russell Hochschild in her 1983 book, "<a href="https://www.ucpress.edu/book/9780520272941/the-managed-heart" target="_blank">The Managed Heart</a>," emotional labor describes the work we do to regulate our emotions on the job. Hochschild's go-to example is the flight attendant, who is tasked with being "nicer than natural" to enhance the customer experience. While at work, flight attendants are expected to smile and be exceedingly helpful even if they are wrestling with personal issues, the passengers are rude, and that one kid just upchucked down the center aisle. Hochschild's counterpart to the flight attendant is the bill collector, who must instead be "nastier than natural."</p><p>Such personas may serve an organization's mission or commercial interests, but if they cause emotional dissonance, they can potentially lead to high emotional costs for the employee—bringing us back to deep and surface acting.</p><p>Deep acting is the process by which people modify their emotions to match their expected role. Deep actors still encounter the negative emotions, but they devise ways to <a href="http://www.selfinjury.bctr.cornell.edu/perch/resources/what-is-emotion-regulationsinfo-brief.pdf" target="_blank">regulate those emotions</a> and return to the desired state. Flight attendants may modify their internal state by talking through harsh emotions (say, with a coworker), focusing on life's benefits (next stop Paris!), physically expressing their desired emotion (smiling and deep breaths), or recontextualizing an inauspicious situation (not the kid's fault he got sick).</p><p>Conversely, surface acting occurs when employees display ersatz emotions to match those expected by their role. These actors are the waiters who smile despite being crushed by the stress of a dinner rush. They are the CEOs who wear a confident swagger despite feelings of inauthenticity. And they are the bouncers who must maintain a steely edge despite humming show tunes in their heart of hearts.</p><p>As we'll see in the research, surface acting can degrade our mental well-being. This deterioration can be especially true of people who must contend with negative emotions or situations inside while displaying an elated mood outside. Hochschild argues such emotional labor can lead to exhaustion and self-estrangement—that is, surface actors erect a bulwark against anger, fear, and stress, but that disconnect estranges them from the emotions that allow them to connect with others and live fulfilling lives.</p>Don't fake it till you make it
<p>Most studies on emotional labor have focused on customer service for the obvious reason that such jobs prescribe emotional states—service with a smile or, if you're in the bouncing business, a scowl. But <a href="https://eller.arizona.edu/people/allison-s-gabriel" target="_blank">Allison Gabriel</a>, associate professor of management and organizations at the University of Arizona's Eller College of Management, wanted to explore how employees used emotional labor strategies in their intra-office interactions and which strategies proved most beneficial.</p><p>"What we wanted to know is whether people choose to engage in emotion regulation when interacting with their co-workers, why they choose to regulate their emotions if there is no formal rule requiring them to do so, and what benefits, if any, they get out of this effort," Gabriel said in <a href="https://www.sciencedaily.com/releases/2020/01/200117162703.htm" target="_blank">a press release</a>.</p><p>Across three studies, she and her colleagues surveyed more than 2,500 full-time employees on their emotional regulation with coworkers. The survey asked participants to agree or disagree with statements such as "I try to experience the emotions that I show to my coworkers" or "I fake a good mood when interacting with my coworkers." Other statements gauged the outcomes of such strategies—for example, "I feel emotionally drained at work." Participants were drawn from industries as varied as education, engineering, and financial services.</p><p>The results, <a href="https://psycnet.apa.org/doiLanding?doi=10.1037%2Fapl0000473" target="_blank" rel="noopener noreferrer">published in the Journal of Applied Psychology</a>, revealed four different emotional strategies. "Deep actors" engaged in high levels of deep acting; "low actors" leaned more heavily on surface acting. Meanwhile, "non-actors" engaged in negligible amounts of emotional labor, while "regulators" switched between both. The survey also revealed two drivers for such strategies: prosocial and impression management motives. The former aimed to cultivate positive relationships, the latter to present a positive front.</p><p>The researchers found deep actors were driven by prosocial motives and enjoyed advantages from their strategy of choice. These actors reported lower levels of fatigue, fewer feelings of inauthenticity, improved coworker trust, and advanced progress toward career goals. </p><p>As Gabriel told <a href="https://www.psypost.org/2021/01/new-psychology-research-suggests-deep-acting-can-reduce-fatigue-and-improve-your-work-life-59081" target="_blank" rel="noopener noreferrer">PsyPost in an interview</a>: "So, it's a win-win-win in terms of feeling good, performing well, and having positive coworker interactions."</p><p>Non-actors did not report the emotional exhaustion of their low-actor peers, but they also didn't enjoy the social gains of the deep actors. Finally, the regulators showed that the flip-flopping between surface and deep acting drained emotional reserves and strained office relationships.</p><p>"I think the 'fake it until you make it' idea suggests a survival tactic at work," Gabriel noted. "Maybe plastering on a smile to simply get out of an interaction is easier in the short run, but long term, it will undermine efforts to improve your health and the relationships you have at work. </p><p>"It all boils down to, 'Let's be nice to each other.' Not only will people feel better, but people's performance and social relationships can also improve."</p>You'll be glad ya' decided to smile
<span style="display:block;position:relative;padding-top:56.25%;" class="rm-shortcode" data-rm-shortcode-id="88a0a6a8d1c1abfcf7b1aca8e71247c6"><iframe type="lazy-iframe" data-runner-src="https://www.youtube.com/embed/QOSgpq9EGSw?rel=0" width="100%" height="auto" frameborder="0" scrolling="no" style="position:absolute;top:0;left:0;width:100%;height:100%;"></iframe></span><p>But as with any research that relies on self-reported data, there are confounders here to untangle. Even during anonymous studies, participants may select socially acceptable answers over honest ones. They may further interpret their goal progress and coworker interactions more favorably than is accurate. And certain work conditions may not produce the same effects, such as toxic work environments or those that require employees to project negative emotions.</p><p>There also remains the question of the causal mechanism. If surface acting—or switching between surface and deep acting—is more mentally taxing than genuinely feeling an emotion, then what physiological process causes this fatigue? <a href="https://www.frontiersin.org/articles/10.3389/fnhum.2019.00151/full" target="_blank">One study published in the <em>Frontiers in Human Neuroscience</em></a><em> </em>measured hemoglobin density in participants' brains using an fNIRS while they expressed emotions facially. The researchers found no significant difference in energy consumed in the prefrontal cortex by those asked to deep act or surface act (though, this study too is limited by a lack of real-life task).<br></p><p>With that said, Gabriel's studies reinforce much of the current research on emotional labor. <a href="https://journals.sagepub.com/doi/abs/10.1177/2041386611417746" target="_blank">A 2011 meta-analysis</a> found that "discordant emotional labor states" (read: surface acting) were associated with harmful effects on well-being and performance. The analysis found no such consequences for deep acting. <a href="https://doi.apa.org/doiLanding?doi=10.1037%2Fa0022876" target="_blank" rel="noopener noreferrer">Another meta-analysis</a> found an association between surface acting and impaired well-being, job attitudes, and performance outcomes. Conversely, deep acting was associated with improved emotional performance.</p><p>So, although there's still much to learn on the emotional labor front, it seems Van Dyke's advice to a Leigh was half correct. We should put on a happy face, but it will <a href="https://bigthink.com/design-for-good/everything-you-should-know-about-happiness-in-one-infographic" target="_self">only help if we can feel it</a>.</p>World's oldest work of art found in a hidden Indonesian valley
Archaeologists discover a cave painting of a wild pig that is now the world's oldest dated work of representational art.
