Graphene typically costs $200,000 per ton. Now, scientists can make it from trash.

Graphene is insanely useful, but very difficult to produce — until now.

Flash graphene

The new technique, developed at Rice University, turns any carbon source into the valuable 2D material in just 10 milliseconds.

Jeff Fitlow
  • Graphene is a lattice of carbon atoms arranged in a chicken-wire formation, a structure that makes it very useful for a wide range of applications.
  • However, it's been very difficult and expensive to make.
  • This new technique cuts down on the cost and difficulty by flash heating any carbon-based material, such as used coffee grounds or plastic waste.


Recent technology developed at Rice University is taking the idea that one man's trash is another man's treasure to its extreme. Banana peels, coffee grounds, single-use plastic containers, coal — all of these and more are being turned into one of the most valuable materials around: graphene. Chemist James Tour and his team have developed a rapid process that can transform bulk-quantities of junk into flakes of graphene.

"This is a big deal," said Tour in a Rice University press release. "The world throws out 30 percent to 40 percent of all food, because it goes bad, and plastic waste is of worldwide concern. We've already proven that any solid carbon-based matter, including mixed plastic waste and rubber tires, can be turned into graphene."

What is graphene?

A rendering of graphene.

Source: Max Pixel / Public Domain

Graphene's value is mainly due to its incredible strength and the wide variety of industrial applications it possesses. This material consists of a single layer of carbon atoms connected to one another by six chemical bonds, creating a lattice that resembles chicken wire.

Not only is graphene extremely useful in scientific experiments due to its high reactivity and strength, it can also be added to all sorts of other materials to improve their strength or to make them more lightweight, such as concrete or metals. It is the most conductive material, making it invaluable for use as a heat sink in, for instance, LEDs or smartphones. It could also be used in battery technology, in paints, in sensors, and many more — there are quite literally too many applications for this material to cover in this article alone.

What is 'flash graphene'?

Despite its high utility, graphene isn't a part of our everyday lives yet. Part of the reason why is because of its prohibitive cost. Graphene is difficult to produce in bulk, with "the present commercial price of graphene being $67,000 to $200,000 per ton," said Tour. Common techniques include exfoliation, in which sheets of graphene are stripped away from graphite, or chemical vapor deposition, in which methane (CH4) is vaporized in the presence of a copper substrate that grabs the methane's carbon atoms, arranging them as graphene.

The new technique, called flash Joule heating, is far simpler, cheaper, and doesn't rely on any hazardous solvents or chemical additives. Simply put, a carbon-based material is exposed to a 2,760°C (5,000°F) heat for just 10 milliseconds. This breaks every chemical bond in the input material. All atoms aside from carbon turn into gas, which escape in this proof-of-concept device but could be captured in industrial applications. The carbon, however, reassembles itself as flakes of graphene.

What's more, this technique produces so-called turbostatic graphene. Other processes produce what's known as A-B stacked graphene, in which half of the atoms in one sheet of graphene lie over the atoms of another sheet of graphene. This results in a tighter bond between the two sheets, making them harder to separate. Turbostatic graphene has no such order between sheets, so they're easier to remove from one another.

The most obvious use case for what the researchers have termed "flash graphene" is to use these graphene flakes as a component in concrete. "By strengthening concrete with graphene," said Tour, "we could use less concrete for building, and it would cost less to manufacture and less to transport. Essentially, we're trapping greenhouse gases like carbon dioxide and methane that waste food would have emitted in landfills. We are converting those carbons into graphene and adding that graphene to concrete, thereby lowering the amount of carbon dioxide generated in concrete manufacture. It's a win-win environmental scenario using graphene."

Concrete is a major application for this material, one that would both be economically and environmentally sound, but many others exist too. As this method and others for producing graphene in bulk mature, we can hope to see a future with increasingly stronger, more lightweight, more advanced, and less environmentally destructive materials and technologies.

This is what aliens would 'hear' if they flew by Earth

A Mercury-bound spacecraft's noisy flyby of our home planet.

Image source: sdecoret on Shutterstock/ESA/Big Think
Surprising Science
  • There is no sound in space, but if there was, this is what it might sound like passing by Earth.
  • A spacecraft bound for Mercury recorded data while swinging around our planet, and that data was converted into sound.
  • Yes, in space no one can hear you scream, but this is still some chill stuff.

First off, let's be clear what we mean by "hear" here. (Here, here!)

Sound, as we know it, requires air. What our ears capture is actually oscillating waves of fluctuating air pressure. Cilia, fibers in our ears, respond to these fluctuations by firing off corresponding clusters of tones at different pitches to our brains. This is what we perceive as sound.

All of which is to say, sound requires air, and space is notoriously void of that. So, in terms of human-perceivable sound, it's silent out there. Nonetheless, there can be cyclical events in space — such as oscillating values in streams of captured data — that can be mapped to pitches, and thus made audible.

BepiColombo

Image source: European Space Agency

The European Space Agency's BepiColombo spacecraft took off from Kourou, French Guyana on October 20, 2019, on its way to Mercury. To reduce its speed for the proper trajectory to Mercury, BepiColombo executed a "gravity-assist flyby," slinging itself around the Earth before leaving home. Over the course of its 34-minute flyby, its two data recorders captured five data sets that Italy's National Institute for Astrophysics (INAF) enhanced and converted into sound waves.

Into and out of Earth's shadow

In April, BepiColombo began its closest approach to Earth, ranging from 256,393 kilometers (159,315 miles) to 129,488 kilometers (80,460 miles) away. The audio above starts as BepiColombo begins to sneak into the Earth's shadow facing away from the sun.

The data was captured by BepiColombo's Italian Spring Accelerometer (ISA) instrument. Says Carmelo Magnafico of the ISA team, "When the spacecraft enters the shadow and the force of the Sun disappears, we can hear a slight vibration. The solar panels, previously flexed by the Sun, then find a new balance. Upon exiting the shadow, we can hear the effect again."

In addition to making for some cool sounds, the phenomenon allowed the ISA team to confirm just how sensitive their instrument is. "This is an extraordinary situation," says Carmelo. "Since we started the cruise, we have only been in direct sunshine, so we did not have the possibility to check effectively whether our instrument is measuring the variations of the force of the sunlight."

When the craft arrives at Mercury, the ISA will be tasked with studying the planets gravity.

Magentosphere melody

The second clip is derived from data captured by BepiColombo's MPO-MAG magnetometer, AKA MERMAG, as the craft traveled through Earth's magnetosphere, the area surrounding the planet that's determined by the its magnetic field.

BepiColombo eventually entered the hellish mangentosheath, the region battered by cosmic plasma from the sun before the craft passed into the relatively peaceful magentopause that marks the transition between the magnetosphere and Earth's own magnetic field.

MERMAG will map Mercury's magnetosphere, as well as the magnetic state of the planet's interior. As a secondary objective, it will assess the interaction of the solar wind, Mercury's magnetic field, and the planet, analyzing the dynamics of the magnetosphere and its interaction with Mercury.

Recording session over, BepiColombo is now slipping through space silently with its arrival at Mercury planned for 2025.

Photo by Martin Adams on Unsplash
Culture & Religion
She was walking down the forest path with a roll of white cloth in her hands. It was trailing behind her like a long veil.
Keep reading Show less

NASA finds water on sunlit moon surface for first time

Water may be far more abundant on the lunar surface than previously thought.

Lunar surface

Credit: Helen_f via AdobeStock
Surprising Science
  • Scientists have long thought that water exists on the lunar surface, but it wasn't until 2018 that ice was first discovered on the moon.
  • A study published Monday used NASA's Stratospheric Observatory for Infrared Astronomy to confirm the presence of molecular water..
  • A second study suggests that shadowy regions on the lunar surface may also contain more ice than previously thought.
Keep reading Show less
Scroll down to load more…
Quantcast