Researchers 3D bioprint realistic human heart model for the first time

A new method is able to create realistic models of the human heart, which could vastly improve how surgeons train for complex procedures.

3D bioprinted heart model
Credit: Carnegie Mellon University College of Engineering
  • 3D bioprinting involves using printers loaded with biocompatible materials to manufacture living or lifelike structures.
  • In a recent paper, a team of engineers from Carnegie Mellon University's College of Engineering developed a new way to 3D bioprint a realistic model of the human heart.
  • The model is flexible and strong enough to be sutured, meaning it could improve the ways surgeons train for cardiac surgeries.

A team of engineers has created a new method for 3D bioprinting realistic, full-sized models of the human heart. The development could improve how surgeons train for complex procedures, and it could represent a milestone on the road toward 3D bioprinting functional human organs.

3D-printed organs aren't a new development. But current techniques produce models that don't feel or behave like real organs, because the printing materials are either too stiff or too soft. To create better models, Adam Feinberg, a professor of biomedical engineering at Carnegie Mellon University, and his colleagues used a technique called FRESH, or Freeform Reversible Embedding of Suspended Hydrogels.

The technique, described in a paper published in ACS Biomaterials Science & Engineering, uses a specialized 3D bioprinter to print soft biomaterials in a gelatin bath of hydrogel. During the printing process, the hydrogel bath helps support the delicate organ model, preventing it from collapsing. Once printed, the team applies heat to the model, causing the leftover hydrogel to melt away.

Using MRI scans of a real human heart, the team was able to 3D bioprint an accurate replica made from alginate, an affordable biomaterial that's derived from seaweed. Alginate, which has been used in tissue engineering and wound dressing for more than a decade, has properties similar to real cardiac tissue, and it's flexible and strong enough for surgeons to suture. That makes it an ideal material to use in training scenarios on organ models.

"We can now build a model that not only allows for visual planning, but allows for physical practice," Feinberg said in a statement. "The surgeon can manipulate it and have it actually respond like real tissue, so that when they get into the operating site they've got an additional layer of realistic practice in that setting."

Modeling incorporates imaging data into the final 3D printed object.

Credit: Carnegie Mellon University College of Engineering

The FRESH technique isn't currently able to 3D bioprint models onto which real cells can grow and form a functional heart, but similar methods may someday make that possible. If scientists can print functional human hearts, it could help the healthcare industry finally meet the demand for heart transplants, which far exceeds supply.

"While major hurdles still exist in bioprinting a full-sized functional human heart, we are proud to help establish its foundational groundwork using the FRESH platform while showing immediate applications for realistic surgical simulation," said Eman Mirdamadi, lead author on the paper, in a statement.

In the meantime, the team behind the FRESH technique hopes to use it to generate models for other organs, like kidneys and liver.

A brief history of human dignity

What is human dignity? Here's a primer, told through 200 years of great essays, lectures, and novels.

Credit: Benjavisa Ruangvaree / AdobeStock
Sponsored by the Institute for Humane Studies
  • Human dignity means that each of our lives have an unimpeachable value simply because we are human, and therefore we are deserving of a baseline level of respect.
  • That baseline requires more than the absence of violence, discrimination, and authoritarianism. It means giving individuals the freedom to pursue their own happiness and purpose.
  • We look at incredible writings from the last 200 years that illustrate the push for human dignity in regards to slavery, equality, communism, free speech and education.
Keep reading Show less

Mathematical model shows how the Nazis could have won WWII's Battle of Britain

With just a few strategical tweaks, the Nazis could have won one of World War II's most decisive battles.

Photo: Heinrich Hoffmann/ullstein bild via Getty Images
Politics & Current Affairs
  • The Battle of Britain is widely recognized as one of the most significant battles that occurred during World War II. It marked the first major victory of the Allied forces and shifted the tide of the war.
  • Historians, however, have long debated the deciding factor in the British victory and German defeat.
  • A new mathematical model took into account numerous alternative tactics that the German's could have made and found that just two tweaks stood between them and victory over Britain.
Keep reading Show less

New data reveals Earth closer to a black hole and 16,000 mph faster

A new study shows our planet is much closer to the supermassive black hole at the galaxy's center than previously estimated.

Position and velocity map of the Milky Way Galaxy.

Credit: NAOJ
Surprising Science
  • A Japanese radio astronomy project revealed Earth is 2,000 light years closer to the supermassive black hole at the Milky Way's center.
  • The data also showed the planet is moving 7 km/s or 16,000 mph faster in orbit around the Galactic Center.
  • The findings don't mean Earth is in more danger from the black hole but reflect better modeling of the galaxy.
  • Keep reading Show less

    How has technology changed — and changed us — in the past 20 years?

    Apple sold its first iPod in 2001, and six years later it introduced the iPhone, which ushered in a new era of personal technology.

    PEDRO UGARTE/AFP via Getty Images
    Technology & Innovation
    Just over 20 years ago, the dotcom bubble burst, causing the stocks of many tech firms to tumble.
    Keep reading Show less
    Surprising Science

    The magic of mushrooms: A mycological trip

    A biologist-reporter investigates his fungal namesake.

    Scroll down to load more…
    Quantcast