10 great minds we lost in 2018

Renowned scientists and technologists who've passed away in 2018.

Stephen Hawking gives a talk. When did Stephen Hawking die?

Legendary physicist Stephen Hawking passed away on March 14, 2018.

Getty Images
  • We lost a great deal of internet pioneers and geniuses of physics in 2018.
  • Creations of fiber optic cables, men on the moon and the unsung heroes of the life sciences made their mark on the scientific enterprise.
  • The loss of men like Stephen Hawking leaves a hole in the sciences, but his work and many others will continue to inspire the generations to come.

Death is an inevitability every passing year. As time marches on to the eternal beyond, we look to some of the great minds we lost in 2018. Many celebrities, musicians and politicians have graced the grave's ledger. Their praises have been sung far and wide. Here we remember and reflect upon the great accomplishments of a few notable titans of science and technology.

Paul G. Allen 

Paul G. Allen was many things to many people. He had a long list of pursuits, talents and genius through his lifetime. From revolutionizing the world in the age of the PC as one of the founders of Microsoft, to running the scientific philanthropist outfit known as the Allen Institute. He had an unflinching curiosity to dig deep into the genome and the neurological centers of humankind itself.

Allen succumbed to cancer earlier this year on October 15th. Throughout his life he amassed a large fortune from Microsoft, which he put to use in the most noble of ways until the very end. His legacy will continue on in the research coming out of the Allen institute for Artificial Intelligence and the many other great things he left behind.

Kuen Charles Kao

Underpinning the entirety of our interconnected world are miles of fiber-optic cables. The man responsible for the first kernel of this idea was Kuen Charles Kao. In 1966 he proposed the use of optical fibers as the major infrastructure for communication. During his heyday, telecommunications used either coaxial electronic cables or broadcast radio signals. Kao among a few others wrote a largely unnoticed paper that would go on to influence and change the course of the world. For this eventual work he set out to do, he'd go on to win the Nobel Prize in Physics in 2009. He died in Hong Kong on September 23rd.

Osamu Shimomura

Born in 1928 in the town of Fukuchiyama, during the height of Japanese expansion, Osamu Shimomura lived through dark and perilous times. Against all odds he went through school and the hardships of his upbringing to eventually discover a crucial component for the biomedical sciences. He discovered the green fluorescent protein (GFP,) which would be the fundamental tool used by researchers to code and confirm the insertion of genes. He shared the Nobel Prize in Chemistry in 2008 with chemist Roger Tsien and neurobiologist Martin Chalfie.

Shimomura died in Nagasaki, Japan on October 19th, He was the first to show that a protein could be fluorescent and contain a light-emitting function in its own protein peptide chain. His pioneering research has allowed this discovery to be used as a tool for inserting genes into other organisms. Until the aequorin, which he discovered and named, was able to be genetically engineered – he freely shared his massive stock he'd collected to laboratories around the world.

Thomas A. Steitz 

Carrying on the work of what Francis Crick called the central dogma of biology - the genes - Thomas A. Steitz would go on to discover the secrets of the ribosome. In 2009 he received a Nobel Prize in Chemistry for his work that contributed to solving the structure of the ribosome, the component responsible for translating genetic information into proteins from the cell. Steitz was a crystallographer who came from a humble background and continued to push forth the important work up until the day he died on October 9th. A colleague of his, Peter Moore, once called him: "the most accomplished structural biologist of his generation."

Stephen W. Hawking

One of the most famous physicists of our time, Stephen W. Hawking roused the public's attention for his deep pursuit into the mysteries of the universe. Theoretical physicist Michio Kaku said of Hawking after his death:

"Not since Albert Einstein has a scientist so captured the public imagination and endeared himself to tens of millions of people around the world."

A unique figure who's adversity against total paralysis became a symbol of human determination and strength, Hawking didn't let his long-running physical ailments stop his triumph for truth. He'd go onto become our leading voice on the strange physics of black holes and quantum theory.

Alan Bean

Alan Bean was the fourth man to step foot and walk on the moon. In his later years he turned to painting as he told the grand story of one of our most important achievements of mankind. Alan Bean stepped onto the Lunar surface after the Apollo 12 flight some four months after Neil Armstrong and Buzz Aldrin had first landed on the moon. Although not the first flight or given as much fanfare as Apollo 11, this mission resulted in a more thorough exploration of the moon. Bean would go on to command a flight to the orbiting space station Skylab and set a record for being in space for 59 consecutive days.

Dorothy Cheney 

Dorothy L. Cheney changed the dynamics of we view the primate life and social structure. With her husband and research partner, Professor Robert M. Seyfarth, they did some of the most important field work with baboons. In a comment about her life in the New York Times it was said:

"Along with Robert Seyfarth, she did wonderfully clever, elegant field experiments that revealed how other primates think about the world — showing that they think in far more sophisticated and interesting ways than people anticipated."
Much of their research was put into the book: How Monkeys See the World: Inside the Mind of Another Species "The most human features of monkeys and apes lie not in their physical appearance but in their social relationships." Cheney helped change and usher in a new way of research to view and understand our primate cousins, by existing in their home territory and seeing their lives in natural action.

Frank Heart 

Frank Heart was the engineer who oversaw the first development of a routing computer for the famous Arpanet, the government's precursor to the internet. In 1969, he led a small team of engineers that would go on to build something called the Interface Message Processor (I.M.P.) The computer's main function was to switch data among other computers connected on the Arpanet. Much of what Heart was doing made it a necessity for him to invent while he went along, things that are fundamental to the internet like error resistance. Mr. Heart invented much of the technology that would go on to be the basis for the router systems we use today.

Leon Lederman

Leon Lederman was a physicist that delved into a wide range of new areas of fundamental physics. He would go on to discover things such as the muon neutrino, neutral kaon meson and learned about something called bottom quarks which make up the fundamental parts of neutrons and protons. Born in 1922 to Jewish Russian emigrants, he lived in a time when Jewish scientists were fleeing Europe en masse. He was part of a cadre of genius physicists who'd help revolutionize the field in the early 20th century.

He shared the 1988 Nobel Prize in physics for his work on the discovery that fundamental particles require symmetry as an intrinsic part of the natural order of things. His scientific legacy lives on as there are continued efforts to explore the many particles he discovered.

Aaron Klug

Aaron Klug was responsible for mapping the structure of viruses. He discovered the geometrical rules and eventual form of the poliovirus. Klug invented electron tomography, which resulted in the three dimensional image of a virus. This won him the Nobel Prize in Chemistry in 1982. Other components of his work would go on to allow him and the many scientists that came after him, the ability to initiate the transcription of RNA, which would become the basis for gene therapy. Klug was knighted in 1988. Throughout his life we went on to lead the Medical Researcher Council and Laboratory of Molecular Biology in the Royal Society.

Live on Monday: Does the US need one billion people?

What would happen if you tripled the US population? Join Matthew Yglesias and Charles Duhigg at 1pm ET on Monday, September 28.

A landslide is imminent and so is its tsunami

An open letter predicts that a massive wall of rock is about to plunge into Barry Arm Fjord in Alaska.

Image source: Christian Zimmerman/USGS/Big Think
Surprising Science
  • A remote area visited by tourists and cruises, and home to fishing villages, is about to be visited by a devastating tsunami.
  • A wall of rock exposed by a receding glacier is about crash into the waters below.
  • Glaciers hold such areas together — and when they're gone, bad stuff can be left behind.

The Barry Glacier gives its name to Alaska's Barry Arm Fjord, and a new open letter forecasts trouble ahead.

Thanks to global warming, the glacier has been retreating, so far removing two-thirds of its support for a steep mile-long slope, or scarp, containing perhaps 500 million cubic meters of material. (Think the Hoover Dam times several hundred.) The slope has been moving slowly since 1957, but scientists say it's become an avalanche waiting to happen, maybe within the next year, and likely within 20. When it does come crashing down into the fjord, it could set in motion a frightening tsunami overwhelming the fjord's normally peaceful waters .

"It could happen anytime, but the risk just goes way up as this glacier recedes," says hydrologist Anna Liljedahl of Woods Hole, one of the signatories to the letter.

The Barry Arm Fjord

Camping on the fjord's Black Sand Beach

Image source: Matt Zimmerman

The Barry Arm Fjord is a stretch of water between the Harriman Fjord and the Port Wills Fjord, located at the northwest corner of the well-known Prince William Sound. It's a beautiful area, home to a few hundred people supporting the local fishing industry, and it's also a popular destination for tourists — its Black Sand Beach is one of Alaska's most scenic — and cruise ships.

Not Alaska’s first watery rodeo, but likely the biggest

Image source: whrc.org

There have been at least two similar events in the state's recent history, though not on such a massive scale. On July 9, 1958, an earthquake nearby caused 40 million cubic yards of rock to suddenly slide 2,000 feet down into Lituya Bay, producing a tsunami whose peak waves reportedly reached 1,720 feet in height. By the time the wall of water reached the mouth of the bay, it was still 75 feet high. At Taan Fjord in 2015, a landslide caused a tsunami that crested at 600 feet. Both of these events thankfully occurred in sparsely populated areas, so few fatalities occurred.

The Barry Arm event will be larger than either of these by far.

"This is an enormous slope — the mass that could fail weighs over a billion tonnes," said geologist Dave Petley, speaking to Earther. "The internal structure of that rock mass, which will determine whether it collapses, is very complex. At the moment we don't know enough about it to be able to forecast its future behavior."

Outside of Alaska, on the west coast of Greenland, a landslide-produced tsunami towered 300 feet high, obliterating a fishing village in its path.

What the letter predicts for Barry Arm Fjord

Moving slowly at first...

Image source: whrc.org

"The effects would be especially severe near where the landslide enters the water at the head of Barry Arm. Additionally, areas of shallow water, or low-lying land near the shore, would be in danger even further from the source. A minor failure may not produce significant impacts beyond the inner parts of the fiord, while a complete failure could be destructive throughout Barry Arm, Harriman Fiord, and parts of Port Wells. Our initial results show complex impacts further from the landslide than Barry Arm, with over 30 foot waves in some distant bays, including Whittier."

The discovery of the impeding landslide began with an observation by the sister of geologist Hig Higman of Ground Truth, an organization in Seldovia, Alaska. Artist Valisa Higman was vacationing in the area and sent her brother some photos of worrying fractures she noticed in the slope, taken while she was on a boat cruising the fjord.

Higman confirmed his sister's hunch via available satellite imagery and, digging deeper, found that between 2009 and 2015 the slope had moved 600 feet downhill, leaving a prominent scar.

Ohio State's Chunli Dai unearthed a connection between the movement and the receding of the Barry Glacier. Comparison of the Barry Arm slope with other similar areas, combined with computer modeling of the possible resulting tsunamis, led to the publication of the group's letter.

While the full group of signatories from 14 organizations and institutions has only been working on the situation for a month, the implications were immediately clear. The signers include experts from Ohio State University, the University of Southern California, and the Anchorage and Fairbanks campuses of the University of Alaska.

Once informed of the open letter's contents, the Alaska's Department of Natural Resources immediately released a warning that "an increasingly likely landslide could generate a wave with devastating effects on fishermen and recreationalists."

How do you prepare for something like this?

Image source: whrc.org

The obvious question is what can be done to prepare for the landslide and tsunami? For one thing, there's more to understand about the upcoming event, and the researchers lay out their plan in the letter:

"To inform and refine hazard mitigation efforts, we would like to pursue several lines of investigation: Detect changes in the slope that might forewarn of a landslide, better understand what could trigger a landslide, and refine tsunami model projections. By mapping the landslide and nearby terrain, both above and below sea level, we can more accurately determine the basic physical dimensions of the landslide. This can be paired with GPS and seismic measurements made over time to see how the slope responds to changes in the glacier and to events like rainstorms and earthquakes. Field and satellite data can support near-real time hazard monitoring, while computer models of landslide and tsunami scenarios can help identify specific places that are most at risk."

In the letter, the authors reached out to those living in and visiting the area, asking, "What specific questions are most important to you?" and "What could be done to reduce the danger to people who want to visit or work in Barry Arm?" They also invited locals to let them know about any changes, including even small rock-falls and landslides.

Learn innovation with 3-star Michelin chef Dominique Crenn

Dominique Crenn, the only female chef in America with three Michelin stars, joins Big Think Live.

Big Think LIVE

Having been exposed to mavericks in the French culinary world at a young age, three-star Michelin chef Dominique Crenn made it her mission to cook in a way that is not only delicious and elegant, but also expressive, memorable, and true to her experience.

Keep reading Show less

Ultracold gas exhibits bizarre quantum behavior

New experiments find weird quantum activity in supercold gas.

Credit: Pixabay
Surprising Science
  • Experiments on an ultracold gas show strange quantum behavior.
  • The observations point to applications in quantum computing.
  • The find may also advance chaos theory and explain the butterfly effect.
  • Keep reading Show less

    3 cognitive biases perpetuating racism at work — and how to overcome them

    Researchers say that moral self-licensing occurs "because good deeds make people feel secure in their moral self-regard."

    Photo by Christina @ wocintechchat.com on Unsplash
    Personal Growth

    Books about race and anti-racism have dominated bestseller lists in the past few months, bringing to prominence authors including Ibram Kendi, Ijeoma Oluo, Reni Eddo-Lodge, and Robin DiAngelo.

    Keep reading Show less
    Scroll down to load more…
    Quantcast