Is wasp venom the next healthcare revolution?

MIT researchers have discovered how to turn wasp venom into an antibiotic.

  • Researchers are looking at the venom of wasps, bees, and arachnids to develop life-saving medical therapies.
  • Researchers at MIT created synthetic variants of a peptide found in wasp venom that proved an effective antibiotic.
  • With the "post-antibiotic era" looming, synthetic peptides could provide a way to maintain global health initiatives.

Two of the most common phobias are the fear of insects and fear of needles, so it's little wonder that people with apiphobia and spheksophobia aren't keen for bees or wasps. These little critters mix both elements and add a dash of caustic venom. However, the pain-inducing liquid is brimming with helpful molecular mixtures that scientists are just waiting to unlock.

Compounds from venom have been used, for example, to create painkillers, reduce blood pressure, and even detect explosives. Earlier in December, MIT engineers added to this laundry list of venomous blessings when they announced they had devised a way to turn wasp venom into an antibiotic. It is research that could have far-reaching effects for the future of healthcare.

A peptide a day

(Photo from Wikimedia)

A Polybia wasp nest in Pantanal, Brazil isn't the type of place one would expect to find a promising antibiotic.

The venoms of bees, wasps, and arachnids contain compounds called antimicrobial peptides (AMPs). As the name suggests, these peptides don't get along with microbes such as bacteria, making them promising therapeutic agents. Unfortunately, being part of the venom cocktail, they can be less than salubrious in their natural form. The goal, then, is to devise a method to adapt an AMP so it continues to fight bacteria but does no harm to human cells.

Researchers at MIT looked toward an AMP found in the venom of the Polybia paulista wasp. Called polybia-CP, it weights in at a mere 12 amino acids, shrimpy by even peptide standards. This made it easy (well, easier) for the researchers to see how their engineered changes altered the AMP's alpha helical structure and its hydrophobicity, features that determine how it interacts with cell membranes.

"It's a small enough peptide that you can try to mutate as many amino acid residues as possible to try to figure out how each building block is contributing to antimicrobial activity and toxicity," César de la Fuente-Nunez, MIT postdoc and senior author on the paper, told MIT News.

After testing a dozen variants on bacteria and fungi, the researchers took the most promising ones to test in mice afflicted with Pseudomonas aeruginosa, a pathogen known for being resistant to multiple antibiotics. The synthetic peptide sterilized the infection, demonstrating its potential as an antibiotic. Further, monitoring the mice's body weight confirmed its lack of toxicity.

"After four days, that compound can completely clear the infection, and that was quite surprising and exciting because we don't typically see that with other experimental antimicrobials or other antibiotics that we've tested in the past with this particular mouse model," De la Fuente-Nunez said.

De la Fuente-Nunez — along with fellow senior editors Timothy Lu (MIT associate professor) and Vani Oliveira (associate professor at Federal University of ABC), and lead author Marcelo Der Torossian Torres (also from MIT) — published their work in the December issue of Communications Biology.

A global life saver?

Anti-microbial-resistant (AMR) pathogens are a growing threat to global health. The World Health Organization has called AMRs an "increasingly serious threat to global public health" and one that "requires action across all government sectors and society." These so-called "superbugs" are responsible for 700,000 deaths annually worldwide. That number could leap to 10 million by 2050.

Without intervention, AMRs could stymie the progress we've made against virulent diseases and prevent WHO from achieving its Sustainable Development Goal #3: Good Health and Well-Being.

If researchers can develop antimicrobial peptides into non-conventional antibiotics, they could stave off the "post-antibiotic era" and save thousands of lives. There is still a lot of research to be done, but studies like those from MIT show promise at being able to combat resistant pathogens, such as the aforementioned Pseudomonas aeruginosa.

"Overall, AMPs offer promising alternatives to standard therapies as anti-infections and immunomodulatory agents with mechanisms of action which are less prone to resistance induction compared to conventional antibiotics," noted a review on the current research into AMPs (emphasis mine). While the review acknowledged existing challenges for repurposing candidate AMPs into successful therapies, it also predicted an acceleration of advances as our understanding grows.

While it's doubtful this research will make anyone afraid of wasps any less afraid, they may be a little more thankful that these critters are in the world and helping scientists develop life-saving medicines. So long as they keep a respectable distance.

​There are two kinds of failure – but only one is honorable

Malcolm Gladwell teaches "Get over yourself and get to work" for Big Think Edge.

Big Think Edge
  • Learn to recognize failure and know the big difference between panicking and choking.
  • At Big Think Edge, Malcolm Gladwell teaches how to check your inner critic and get clear on what failure is.
  • Subscribe to Big Think Edge before we launch on March 30 to get 20% off monthly and annual memberships.
Keep reading Show less

For a long time, the West shaped the world. That time is over.

The 21st century is experiencing an Asianization of politics, business, and culture.

Videos
  • Our theories about the world, even about history or the geopolitics of the present, tend to be shaped by Anglo perspectives of the Western industrial democracies, particularly those in the United States and the United Kingdom.
  • The West, however, is not united. Canada, for instance, acts in many ways that are not in line with American or British policies, particularly in regard to populism. Even if it were united, though, it would not represent most of the world's population.
  • European ideas, such as parliamentary democracy and civil service, spread across the world in the 19th century. In the 20th century, American values such as entrepreneurialism went global. In the 21st century, however, what we're seeing now is an Asianization — an Asian confidence that they can determine their own political systems, their own models, and adapt to their own circumstances.
Keep reading Show less

Why modern men are losing their testosterone

Research has shown that men today have less testosterone than they used to. What's happening?

Flickr user Tom Simpson
Sex & Relationships
  • Several studies have confirmed that testosterone counts in men are lower than what they used to be just a few decades ago.
  • While most men still have perfectly healthy testosterone levels, its reduction puts men at risk for many negative health outcomes.
  • The cause of this drop in testosterone isn't entirely clear, but evidence suggests that it is a multifaceted result of modern, industrialized life.
Keep reading Show less

Why the ocean you know and love won’t exist in 50 years

Can sensitive coral reefs survive another human generation?

Videos
  • Coral reefs may not be able to survive another human decade because of the environmental stress we have placed on them, says author David Wallace-Wells. He posits that without meaningful changes to policies, the trend of them dying out, even in light of recent advances, will continue.
  • The World Wildlife Fund says that 60 percent of all vertebrate mammals have died since just 1970. On top of this, recent studies suggest that insect populations may have fallen by as much as 75 percent over the last few decades.
  • If it were not for our oceans, the planet would probably be already several degrees warmer than it is today due to the emissions we've expelled into the atmosphere.
Keep reading Show less