Tiny parasite-like robots are the future of pain relief

Researchers design microdevices that can gradually deliver medicine by latching on to intestines.

Tiny parasite-like robots are the future of pain relief

Dozens of theraggrippers on a swab.

Credit: Johns Hopkins University
  • A research team from Johns Hopkins University designs microdevices that can deliver medicine.
  • The tiny robots are based on parasite hookworms.
  • The machines can latch on to the intestines and gradually release pain-relieving drugs.

Researchers created tiny devices that can deliver drugs to the body by attaching themselves to a person's intestines.

The research team was led by engineering professor David Gracias and gastroenterologist Florin M. Selaru from Johns Hopkins University. The scientists took inspiration from the hookworm – parasitic worm that is known to dig its sharp teeth into the intestines of the host. The scientists created shape-shifting microdevices called "theragrippers" that can mimic the worm and latch on to the intestinal mucosa of a patient.

The six-pointed devices, each as large as a dust speck, are made of metal and thin film that can allow them to change shapes. They are covered by a heat-sensitive paraffin wax and have the potential to release a drug gradually into the body. This method improves upon other extended-release drugs that tend to go all the way through the gastrointestinal tract before fully dispensing all medicine.

"Normal constriction and relaxation of GI tract muscles make it impossible for extended-release drugs to stay in the intestine long enough for the patient to receive the full dose," explained Selaru." We've been working to solve this problem by designing these small drug carriers that can autonomously latch onto the intestinal mucosa and keep the drug load inside the GI tract for a desired duration of time."

The scientists say that thousands such devices can be let loose in a GI tract. As the wax coating on tiny robots matches the body's inside temperature, theraggrippers automatically close and latch on to the wall of the colon. As they do so and dig into the mucosa, they start slowly releasing the stored medicine. In time, the devices lose their grip on the intestine tissue and leave the organ through usual gastrointestinal function.

March of the microscopic robots

The very small robots don't rely on electricity or wireless signals, and don't have room for batteries, antennas, or any external controls, explained Gracias. Instead, the grippers work like "small, compressed springs with a temperature-triggered coating" which releases the stored energy.

In the trial, the researchers managed to fit about 6,000 such devices on a 3-inch silicon wafer. Experiments on rats showed a successful dispersion of pain-relieving drugs into the bloodstreams.

Check out the new study published in Science Advances.

‘Designer baby’ book trilogy explores the moral dilemmas humans may soon create

How would the ability to genetically customize children change society? Sci-fi author Eugene Clark explores the future on our horizon in Volume I of the "Genetic Pressure" series.

Surprising Science
  • A new sci-fi book series called "Genetic Pressure" explores the scientific and moral implications of a world with a burgeoning designer baby industry.
  • It's currently illegal to implant genetically edited human embryos in most nations, but designer babies may someday become widespread.
  • While gene-editing technology could help humans eliminate genetic diseases, some in the scientific community fear it may also usher in a new era of eugenics.
Keep reading Show less

Octopus-like creatures inhabit Jupiter’s moon, claims space scientist

A leading British space scientist thinks there is life under the ice sheets of Europa.

Jupiter's moon Europa has a huge ocean beneath its sheets of ice.

Credit: NASA/JPL-Caltech/SETI Institute
Surprising Science
  • A British scientist named Professor Monica Grady recently came out in support of extraterrestrial life on Europa.
  • Europa, the sixth largest moon in the solar system, may have favorable conditions for life under its miles of ice.
  • The moon is one of Jupiter's 79.
Keep reading Show less

Lair of giant predator worms from 20 million years ago found

Scientists discover burrows of giant predator worms that lived on the seafloor 20 million years ago.

Bobbit worm (Eunice aphroditois).

Credit: Jenny – Flickr
Surprising Science
  • Scientists in Taiwan find the lair of giant predator worms that inhabited the seafloor 20 million years ago.
  • The worm is possibly related to the modern bobbit worm (Eunice aphroditois).
  • The creatures can reach several meters in length and famously ambush their pray.
Keep reading Show less

What is the ‘self’? The 3 layers of your identity.

Answering the question of who you are is not an easy task. Let's unpack what culture, philosophy, and neuroscience have to say.

Videos
  • Who am I? It's a question that humans have grappled with since the dawn of time, and most of us are no closer to an answer.
  • Trying to pin down what makes you you depends on which school of thought you prescribe to. Some argue that the self is an illusion, while others believe that finding one's "true self" is about sincerity and authenticity.
  • In this video, author Gish Jen, Harvard professor Michael Puett, psychotherapist Mark Epstein, and neuroscientist Sam Harris discuss three layers of the self, looking through the lens of culture, philosophy, and neuroscience.
Keep reading Show less
Mind & Brain

Here’s how you know when someone’s lying to your face

When someone is lying to you personally, you may be able to see what they're doing.

Scroll down to load more…
Quantcast