Scientists discover a new way to search for dark matter

Have we already found dark matter? It may be hiding in existing data, says a study.

Scientists discover a new way to search for dark matter

A simulation of the evolving dark matter in the universe.

Credit: Milennium-II Simulation
  • A new study proposes to look for dark matter during the process of scattering.
  • The scientists think dark matter indicators could be hiding in existing data.
  • The researchers aim to adapt current experiments to find the elusive particles.

Dark matter is famously supposed to take up 27% of the existing mass-energy of the universe. Dark energy eats up another 68%, while ordinary matter and energy that includes us accounts for just about 5%, scientists estimate. But if so much of everything is taken up by dark matter and dark energy, where are they? Neither has been conclusively detected, but a new study proposes a fresh way to spot dark matter signatures, looking in data we already gathered.

The study, led by researchers from the Lawrence Berkeley National Laboratory and UC Berkeley, found that it may be possible to detect dark matter signals during scattering. This process occurs when dark matter particles collide with atomic nuclei, producing small flashes of light and other potentially noticeable indicators. The scientists think they can pinpoint such moments and capture dark matter by looking for ejected electrons, neutrinos or other signs.

The study suggests that some currently existing experiments can be adapted to search for these kind of signals that relate to how the dark matter energy is absorbed.

The scientists also propose they can look through particle detector data that's already been gathered to find dark matter characteristics.

The study's lead author, postdoctoral researcher Jeff Dror from Berkeley Lab's Theory Group and UC Berkeley's Berkeley Center for Theoretical Physics, explained that "You can make a huge amount of progress with very little cost if you step back a little bit in the way we've been thinking about dark matter."

Photomultiplier tube arrays prepared for the LUX-ZEPLIN experiment. Sanford Underground Research Facility in Lead, South Dakota.

Credit: Matt Kapust/SURF

The researchers hope their approach can lead to new avenues in the search for the elusive dark matter. One plan is to focus on discovering light fermions, which may be related to the so-called "sterile neutrinos" – another theorized particle.

Most conducive to re-adapting, according to the scientists, would be existing experiments involving large, highly-sensitive detector materials with low background "noise" or interference. One such contraption could be the ultra sensitive UX-ZEPLIN (LZ), a dark matter search project currently under construction in a former South Dakota mine.

Another possibility is try the new method with the data from the Enriched Xenon Observatory (EXO), an underground experiment that already cooperated with the researchers.

"The data is already basically sitting there. It's just a matter of looking at it," Dror stated.

The scientists plan to explore various collaborations to tweak already running experiments.

Dror thinks finding out what dark matter is made of would be within future reach. "For me, that's a huge motivation to keep pushing—there is new physics out there," he added.

The study's co-authors included the UC Berkeley graduate student Robert McGehee, and Gilly Elor of the University of Washington.

Read the new study in Physical Review Letters.

COVID-19 amplified America’s devastating health gap. Can we bridge it?

The COVID-19 pandemic is making health disparities in the United States crystal clear. It is a clarion call for health care systems to double their efforts in vulnerable communities.

Willie Mae Daniels makes melted cheese sandwiches with her granddaughter, Karyah Davis, 6, after being laid off from her job as a food service cashier at the University of Miami on March 17, 2020.

Credit: Joe Raedle/Getty Images
Sponsored by Northwell Health
  • The COVID-19 pandemic has exacerbated America's health disparities, widening the divide between the haves and have nots.
  • Studies show disparities in wealth, race, and online access have disproportionately harmed underserved U.S. communities during the pandemic.
  • To begin curing this social aliment, health systems like Northwell Health are establishing relationships of trust in these communities so that the post-COVID world looks different than the pre-COVID one.
Keep reading Show less

Chernobyl fungus could shield astronauts from cosmic radiation

A recent study tested how well the fungi species Cladosporium sphaerospermum blocked cosmic radiation aboard the International Space Station.

C. sphaerospermum

Medmyco / Wikimedia Commons
Surprising Science
  • Radiation is one of the biggest threats to astronauts' safety during long-term missions.
  • C. sphaerospermum is known to thrive in high-radiation environments through a process called radiosynthesis.
  • The results of the study suggest that a thin layer of the fungus could serve as an effective shield against cosmic radiation for astronauts.
Keep reading Show less

Bruce Lee: How to live successfully in a world with no rules

Shannon Lee shares lessons from her father in her new book, "Be Water, My Friend: The Teachings of Bruce Lee."

Bruce Lee: How to live successfully in a world with no rules ...
Videos
  • Bruce Lee would have turned 80 years old on November 27, 2020. The legendary actor and martial artist's daughter, Shannon Lee, shares some of his wisdom and his philosophy on self help in a new book titled "Be Water, My Friend: The Teachings of Bruce Lee."
  • In this video, Shannon shares a story of the fight that led to her father beginning a deeper philosophical journey, and how that informed his unique expression of martial arts called Jeet Kune Do.
  • One lesson passed down from Bruce Lee was his use and placement of physical symbols as a way to help "cement for yourself this new way of being, or this new lesson you've learned." By working on ourselves (with the right tools), we can develop the skills necessary to rise and conquer new challenges.
Keep reading Show less

3 reasons for information exhaustion – and what to do about it

How to deal with "epistemic exhaustion."

Photo by Filip Mishevski on Unsplash
Mind & Brain
An endless flow of information is coming at us constantly: It might be an article a friend shared on Facebook with a sensational headline or wrong information about the spread of the coronavirus.
Keep reading Show less
Culture & Religion

Top 5 theories on the enigmatic monolith found in Utah desert

A strange object found in Utah desert has prompted worldwide speculation about its origins.

Scroll down to load more…
Quantcast