Self-Motivation
David Goggins
Former Navy Seal
Career Development
Bryan Cranston
Actor
Critical Thinking
Liv Boeree
International Poker Champion
Emotional Intelligence
Amaryllis Fox
Former CIA Clandestine Operative
Management
Chris Hadfield
Retired Canadian Astronaut & Author
Learn
from the world's big
thinkers
Start Learning

Scientists create 10-minute test that can detect cancer anywhere in the body

The quick test would be a breakthrough in cancer treatment.

Adding healthy DNA to the pink water full of gold particles turns it blue, but when cancerous DNA is added, the water remains pink (University of Queensland).
  • Australian researchers find 3D nanostructures that are unique to cancer cells.
  • These markers can be identified using technology that may be available on cell phones.
  • Human clinical trials are next for the team.

Australian researchers claim in a new study that they developed a 10-minute test that's capable of finding cancer cells at any location in the body. If further testing achieves the same results, this accomplishment could be a real breakthrough in fighting cancer.

The potential for quick diagnoses could help detect and treat cancer early, potentially helping the outcomes for millions of people. The test works by looking for a unique DNA nanostructure that seems to be common to all types cancers. What's especially remarkable is that the variability of cancers makes finding one simple signature shared by them all very complicated.

The study carried out by researchers Dr Abu Sina, Dr Laura Carrascosa and Professor Matt Trau from the University of Queensland, looked for common markers in cancers that would be different from healthy cells.

"This unique nano-scaled DNA signature appeared in every type of breast cancer we examined, and in other forms of cancer including prostate, colorectal and lymphoma," said Dr. Sina. "The levels and patterns of tiny molecules called methyl groups that decorate DNA are altered dramatically by cancer – these methyl groups are key for cells to control which genes are turned on and off."

Professor Matt Trau, Dr Abu Sina and Dr Laura Carrascosa.

Credit: University of Queensland.

Dr. Carrascosa explained that the team made a tool that can look at what changes happen over the entire genome level of cells. In particular, what they noticed is that methyl groups in a healthy cell can be found across the whole genome while in cancer cells the genomes "are essentially barren except for intense clusters of methyl groups at very specific locations."

The team found that when clusters of methyl groups are placed in a solution, the cancer DNA fragments folded into unusual three-dimensional nanostructures. What's more - these could be made to separate if stuck to gold and other solid surfaces. This breakthrough led to the development of a test using gold nanoparticles that can change color to show if the cancer DNA is present.

Dr. Tau from the team said "this led to the creation of inexpensive and portable detection devices that could eventually be used as a diagnostic tool, possibly with a mobile phone."

This tech has proven to be 90% accurate when used on a group that included 200 human cancer samples and normal DNA. The diseases detected included breast, prostate, bowel and lymphoma cancers.

The researchers are urging caution, saying they don't know yet if what they created is "the holy grail for all cancer diagnostics." Other scientists have also expressed some skepticism, pointing to the fact this type of testing can produce false positives, leading to more expensive testing. The test is also unable to show how severe the extent of the disease is.

Despite the reservations and competitors, like a recent initiative from Johns Hopkins University to create a quick $500 blood test, the Australian researchers are optimistic that their find of "an incredibly simple universal marker of cancer" can result in "an accessible and inexpensive technology that doesn't require complicated lab-based equipment like DNA sequencing," Professor Trau shared.

Such technology could be particularly useful in rural or underdeveloped areas, where additional medical resources are not available. It can also be useful in monitoring for re-appearances of cancers.

Clinical trials on humans are next for the team.

Check out their new study in Nature Communications magazine.

The “new normal” paradox: What COVID-19 has revealed about higher education

Higher education faces challenges that are unlike any other industry. What path will ASU, and universities like ASU, take in a post-COVID world?

Photo: Luis Robayo/AFP via Getty Images
Sponsored by Charles Koch Foundation
  • Everywhere you turn, the idea that coronavirus has brought on a "new normal" is present and true. But for higher education, COVID-19 exposes a long list of pernicious old problems more than it presents new problems.
  • It was widely known, yet ignored, that digital instruction must be embraced. When combined with traditional, in-person teaching, it can enhance student learning outcomes at scale.
  • COVID-19 has forced institutions to understand that far too many higher education outcomes are determined by a student's family income, and in the context of COVID-19 this means that lower-income students, first-generation students and students of color will be disproportionately afflicted.
Keep reading Show less

An organism found in dirt may lead to an anxiety vaccine, say scientists

Can dirt help us fight off stress? Groundbreaking new research shows how.

University of Colorado Boulder
Surprising Science
  • New research identifies a bacterium that helps block anxiety.
  • Scientists say this can lead to drugs for first responders and soldiers, preventing PTSD and other mental issues.
  • The finding builds on the hygiene hypothesis, first proposed in 1989.
Keep reading Show less

R.P. Eddy wrote about a coming pandemic in 2017. Why didn't we listen?

In his book with Richard Clarke, "Warnings," Eddy made clear this was inevitable.

A medical staff member washes her face at Parque dos Atletas (Athlete's Village) field hospital amidst the coronavirus (COVID-19) pandemic on June 8, 2020 in Rio de Janeiro, Brazil.

Photo by Buda Mendes/Getty Images
Coronavirus
  • In their 2017 book, "Warnings," R.P. Eddy and Richard Clarke warned about a coming pandemic.
  • "You never get credit for correctly predicting an outbreak," says science journalist Laurie Garrett in the book.
  • In this interview with Big Think, R.P. Eddy explains why people don't listen to warnings—and how to try to get them to listen.
Keep reading Show less

Creativity: The science behind the madness

Human brains evolved for creativity. We just have to learn how to access it.

Creativity: The science behind the madness | Rainn Wilson, David Eagleman, Scott ...
Videos
  • An all-star cast of Big Thinkers—actors Rainn Wilson and Ethan Hawke; composer Anthony Brandt; neuroscientists David Eagleman, Wendy Suzuki, and Beau Lotto; and psychologist Scott Barry Kaufman—share how they define creativity and explain how our brains uniquely evolved for the phenomenon.
  • According to Eagleman, during evolution there was an increase in space between our brain's input and output that allows information more time to percolate. We also grew a larger prefrontal cortex which "allows us to simulate what ifs, to separate ourselves from our location in space and time and think about possibilities."
  • Scott Barry Kaufman details 3 brain networks involved in creative thinking, and Wendy Suzuki busts the famous left-brain, right-brain myth.

Sex & Relationships

New study explores how to navigate 'desire discrepancies' in long term relationships

With the most common form of female sexual dysfunction impacting 1 in 10 women, this important study dives into how to keep a relationship going despite having different needs and wants in the bedroom.

Scroll down to load more…
Quantcast