Big ideas.
Once a week.
Subscribe to our weekly newsletter.
Physicists invent a new way to search for dark matter using lasers
Japanese physicists devise technology to discover axion dark matter.

KAGRA observatory | CERN laser experiment.
- Physicists from the University of Tokyo plan to use lasers to discover axions.
- Axions are theoretical particles that may be components of dark matter.
- Dark matter is a mysterious substance that may compose up to 27% of the universe.
Japanese physicists propose modifications to existing equipment that could allow them to pinpoint axions, hypothetical particles that may be components of dark matter. Dark matter, a mysterious theoretical substance that is thought to make up about 27% of all matter in the universe, is yet to be directly observed.
The scientists hope to track down the elusive axions using experiments with lasers.
The difficulty in finding dark matter is that it is made of, as many physicists think, weakly interacting massive particles or WIMPs, produced in the early Universe. While we haven't figured out how to spot these particles directly, interacting with regular matter, but we've been able to predict their existence by the gravitational effects they have throughout the universe.
The celebrated Large Hadron Collider in Switzerland has been used to search for WIMPs, and now a new approach from Japan hopes to use the KAGRA Observatory to discover dark matter by tracking down axions.
KAGRA stands for the Kamioka Gravitational Wave Detector. This first major gravitational wave observatory in Asia is located deep under a mountain of the Kamioka mine in Japan's Gifu Prefecture.
The Assistant Professor Yuta Michimura from the Department of Physics at the University of Tokyo, which runs the KAGRA project, explained that because axions are light and don't interact with normal matter, they are good candidates for dark matter.
Interestingly, he also quantified how much dark matter is there, saying the amount of it inside our planet would weigh as much as a squirrel —
"We don't know the mass of axions, but we usually think it has a mass less than that of electrons, " said Michimura. "Our universe is filled with dark matter and it's estimated there are 500 grams of dark matter within the Earth, about the mass of a squirrel."
The proposed instrument that would hunt for axion dark matter.
Credit: 2019 Nagano et al | University of Tokyo Institute for Cosmic Ray Research
As you can imagine, spotting such particles is no easy task. Physicists have to figure out ways that can make the particles reveal themselves through their signatures.
Koji Nagano, a graduate student at the Institute for Cosmic Ray Research at the University of Tokyo, says that their models show that axions affect light polarization, which describes the geometrical orientation of oscillating electromagnetic waves.
Their method of finding axions relies on this finding.
"This polarization modulation can be enhanced if the light is reflected back and forth many times in an optical cavity composed of two parallel mirrors apart from each other, " further expounds their approach Nagano.
The best examples of such cavities, says the researcher, are the long tunnels of gravitational-wave observatories.
"There is overwhelming astrophysical and cosmological evidence that dark matter exists, but the question "What is dark matter?" is one of the biggest outstanding problems in modern physics," said Nagano. "If we can detect axions and say for sure they are dark matter, it would be a truly exciting event indeed. It's what physicists like us dream for."
The team proposes plans to inexpensively modify existing observatories like KAGRA or the Laser Interferometer Gravitational-Wave Observatory (LIGO) in the U.S. to search for the axions. The plan, according to Michimura, would be to add "polarization optics in front of photodiode sensors in gravitational-wave detectors."
The idea's additional benefit is that it doesn't require building entirely new facilities. Upgrading gravitational wave labs would not hamper their original missions — looking for gravitational waves. But the new functionality would open a new chapter in the search for dark matter.
The study involved Koji Nagano, Tomohiro Fujita, Yuta Michimura, and Ippei Obata.
Check out the their paper "Axion Dark Matter Search with Interferometric Gravitational Wave Detectors" in the journal Physical Review Letters.
Scientists find 16 'ultra-black' fish species that absorb 99.9% of light
These alien-like creatures are virtually invisible in the deep sea.
A female Pacific blackdragon
- A team of marine biologists used nets to catch 16 species of deep-sea fish that have evolved the ability to be virtually invisible to prey and predators.
- "Ultra-black" skin seems to be an evolutionary adaptation that helps fish camouflage themselves in the deep sea, which is illuminated by bioluminescent organisms.
- There are likely more, and potentially much darker, ultra-black fish lurking deep in the ocean.
The Pacific blackdragon
Credit: Karen Osborn/Smithsonian
<p>When researchers first saw the deep-sea species, it wasn't immediately obvious that their skin was ultra-black. Then, marine biologist Karen Osborn, a co-author on the new paper, noticed something strange about the photos she took of the fish.</p><p style="margin-left: 20px;">"I had tried to take pictures of deep-sea fish before and got nothing but these really horrible pictures, where you can't see any detail," Osborn told <em><a href="https://www.wired.com/story/meet-the-ultra-black-vantafish/" target="_blank">Wired</a></em>. "How is it that I can shine two strobe lights at them and all that light just disappears?"</p><p>After examining samples of fish skin under the microscope, the researchers discovered that the fish skin contains a layer of organelles called melanosomes, which contain melanin, the same pigment that gives color to human skin and hair. This layer of melanosomes absorbs most of the light that hits them.</p>A crested bigscale
Credit: Karen Osborn/Smithsonian
<p style="margin-left: 20px;">"But what isn't absorbed side-scatters into the layer, and it's absorbed by the neighboring pigments that are all packed right up close to it," Osborn told <em>Wired</em>. "And so what they've done is create this super-efficient, very-little-material system where they can basically build a light trap with just the pigment particles and nothing else."</p><p>The result? Strange and terrifying deep-sea species, like the crested bigscale, fangtooth, and Pacific blackdragon, all of which appear in the deep sea as barely more than faint silhouettes.</p>Pacific viperfish
David Csepp, NMFS/AKFSC/ABL
<p>But interestingly, this unique disappearing trick wasn't passed on to these species by a common ancestor. Rather, they each developed it independently. As such, the different species use their ultra-blackness for different purposes. For example, the threadfin dragonfish only has ultra-black skin during its adolescent years, when it's rather defenseless, as <em>Wired</em> <a href="https://www.wired.com/story/meet-the-ultra-black-vantafish/" target="_blank">notes</a>.</p><p>Other fish—like the <a href="http://onebugaday.blogspot.com/2016/06/a-new-anglerfish-oneirodes-amaokai.html" target="_blank">oneirodes species</a>, which use bioluminescent lures to bait prey—probably evolved ultra-black skin to avoid reflecting the light their own bodies produce. Meanwhile, species like <em>C. acclinidens</em> only have ultra-black skin around their gut, possibly to hide light of bioluminescent fish they've eaten.</p><p>Given that these newly described species are just ones that this team found off the coast of California, there are likely many more, and possibly much darker, ultra-black fish swimming in the deep ocean. </p>'Deep Nostalgia' AI brings old photos to life through animation
Using machine-learning technology, the genealogy company My Heritage enables users to animate static images of their relatives.
- Deep Nostalgia uses machine learning to animate static images.
- The AI can animate images by "looking" at a single facial image, and the animations include movements such as blinking, smiling and head tilting.
- As deepfake technology becomes increasingly sophisticated, some are concerned about how bad actors might abuse the technology to manipulate the pubic.
My Heritage/Deep Nostalgia
<p>But that's not to say the animations are perfect. As with most deep-fake technology, there's still an uncanny air to the images, with some of the facial movements appearing slightly unnatural. What's more, Deep Nostalgia is only able to create deepfakes of one person's face from the neck up, so you couldn't use it to animate group photos, or photos of people doing any sort of physical activity.</p>My Heritage/Deep Nostalgia
<p>But for a free deep-fake service, Deep Nostalgia is pretty impressive, especially considering you can use it to create deepfakes of <em>any </em>face, human or not. </p>When does an idea die? Plato and string theory clash with data
How long should one wait until an idea like string theory, seductive as it may be, is deemed unrealistic?
- How far should we defend an idea in the face of contrarian evidence?
- Who decides when it's time to abandon an idea and deem it wrong?
- Science carries within it its seeds from ancient Greece, including certain prejudices of how reality should or shouldn't be.
Plato used the allegory of the cave to explain that what humans see and experience is not the true reality.
Credit: Gothika via Wikimedia Commons CC 4.0
<p>When scientists and mathematicians use the term <em>Platonic worldview</em>, that's what they mean in general: The unbound capacity of reason to unlock the secrets of creation, one by one. Einstein, for one, was a believer, preaching the fundamental reasonableness of nature; no weird unexplainable stuff, like a god that plays dice—his tongue-in-cheek critique of the belief that the unpredictability of the quantum world was truly fundamental to nature and not just a shortcoming of our current understanding. Despite his strong belief in such underlying order, Einstein recognized the imperfection of human knowledge: "What I see of Nature is a magnificent structure that we can comprehend only very imperfectly, and that must fill a thinking person with a feeling of humility." (Quoted by Dukas and Hoffmann in <em>Albert Einstein, The Human Side: Glimpses from His Archives</em> (1979), 39.)</p> <p>Einstein embodies the tension between these two clashing worldviews, a tension that is still very much with us today: On the one hand, the Platonic ideology that the fundamental stuff of reality is logical and understandable to the human mind, and, on the other, the acknowledgment that our reasoning has limitations, that our tools have limitations and thus that to reach some sort of final or complete understanding of the material world is nothing but an impossible, <a href="https://www.amazon.com/dp/B01K2JTGIA?tag=bigthink00-20&linkCode=ogi&th=1&psc=1" target="_blank" rel="noopener noreferrer">semi-religious dream</a>.</p>Can you still spread coronavirus after getting the vaccine?
The vaccine will shorten the "shedding" time.
