‘Deepfake’ technology can now create real-looking human faces

A new study from Nvidia researchers show just how far artificial image-generation technology has come in recent years.

‘Deepfake’ technology can now create real-looking human faces
Karros et al.
  • In 2014, researchers introduced a novel approach to generating artificial images through something called a generative adversarial network.
  • Nvidia researchers combined that approach with something called style transfer to create AI-generated images of human faces.
  • This year, the Department of Defense said it had been developing tools designed to detect so-called 'deepfake' videos.

A new paper from researchers at Nvidia shows just how far AI image generation technology has come in the past few years. The results are pretty startling.

Take the image below. Can you tell which faces are real?

Karros et al.

Actually, all of the above images are fake, and they were produced by what the researchers call a style-based generator, which is a modified version of the conventional technology that's used to automatically generate images. To sum up quickly:

In 2014, a researcher named Ian Goodfellow and his colleagues wrote a paper outlining a new machine learning concept called generative adversarial networks. The idea, in simplified terms, involves pitting two neural networks against each other. One acts as a generator that looks at, say, pictures of dogs and then does its best to create an image of what it thinks a dog looks like. The other network acts as a discriminator that tries to tell fake images from real ones.

At first, the generator might produce some images that don't look like dogs, so the discriminator shoots them down. But the generator now knows a bit about where it went wrong, so the next image it creates is slightly better. This process continues until, in theory, the generator creates a good image of a dog.

What the Nvidia researchers did was add to their generative adversarial network some principles of style transfer, a technique that involves recomposing one image in the style of another. In style transfer, neural networks look at multiple levels of an image in order to discriminate between the content of the picture and its style, e.g. the smoothness of lines, thickness of brush stroke, etc.

Here are a couple examples of style transfer.

In the Nvidia study, the researchers were able to combine two real images of human faces to generate a composite of the two. This artificially generated composite had the pose, hair style, and general face shape of the source image (top row), while it had the hair and eye colors, and finer facial features, of the destination image (left-hand column).

The results are surprisingly realistic, for the most part.

Karros et al.

​Concerns over 'deepfake' technology

The ability to generate realistic artificial images, often called deepfakes when images are meant to look like recognizable people, has raised concern in recent years. After all, it's not hard to imagine how this technology could allow someone to create a fake video of, say, a politician saying something abhorrent about a certain group. This could lead to a massive erosion of the public's willingness to believe anything that's reported in the media. (As if concerns about 'fake news' weren't enough.)

To keep up with deepfake technology, the Department of Defense has been developing tools designed to detect deepfake videos.

"This is an effort to try to get ahead of something," said Florida senator Marco Rubio in July. "The capability to do all of this is real. It exists now. The willingness exists now. All that is missing is the execution. And we are not ready for it, not as a people, not as a political branch, not as a media, not as a country."

However, there might be a paradoxical problem with the government's effort.

"Theoretically, if you gave a [generative adversarial network] all the techniques we know to detect it, it could pass all of those techniques," David Gunning, the DARPA program manager in charge of the project, told MIT Technology Review. "We don't know if there's a limit. It's unclear."

How tiny bioelectronic implants may someday replace pharmaceutical drugs

Scientists are using bioelectronic medicine to treat inflammatory diseases, an approach that capitalizes on the ancient "hardwiring" of the nervous system.

Left: The vagus nerve, the body's longest cranial nerve. Right: Vagus nerve stimulation implant by SetPoint Medical.

Credit: Adobe Stock / SetPoint Medical
Sponsored by Northwell Health
  • Bioelectronic medicine is an emerging field that focuses on manipulating the nervous system to treat diseases.
  • Clinical studies show that using electronic devices to stimulate the vagus nerve is effective at treating inflammatory diseases like rheumatoid arthritis.
  • Although it's not yet approved by the US Food and Drug Administration, vagus nerve stimulation may also prove effective at treating other diseases like cancer, diabetes and depression.
Keep reading Show less

U.S. Navy controls inventions that claim to change "fabric of reality"

Inventions with revolutionary potential made by a mysterious aerospace engineer for the U.S. Navy come to light.

U.S. Navy ships

Credit: Getty Images
Surprising Science
  • U.S. Navy holds patents for enigmatic inventions by aerospace engineer Dr. Salvatore Pais.
  • Pais came up with technology that can "engineer" reality, devising an ultrafast craft, a fusion reactor, and more.
  • While mostly theoretical at this point, the inventions could transform energy, space, and military sectors.
Keep reading Show less

Physicist creates AI algorithm that may prove reality is a simulation

A physicist creates an AI algorithm that predicts natural events and may prove the simulation hypothesis.

Pixellated head simulation.

Credit: Adobe Stock
Surprising Science
  • Princeton physicist Hong Qin creates an AI algorithm that can predict planetary orbits.
  • The scientist partially based his work on the hypothesis which believes reality is a simulation.
  • The algorithm is being adapted to predict behavior of plasma and can be used on other natural phenomena.
Keep reading Show less
Photo by AJ Colores on Unsplash
Mind & Brain
Why do some people fight and others flee when confronting violence?
Keep reading Show less
Coronavirus

Eight women at the forefront of the world’s COVID-19 response

Beyond making up 70% of the world's health workers, women researchers have been at the cutting edge of coronavirus research.

Quantcast