Big ideas.
Once a week.
Subscribe to our weekly newsletter.
These 7 countries and companies are going to Mars in the 2020s
Here's what the world's space agencies hope to learn about the Red planet.

- Three nations have plans to send unmanned missions to Mars in summer 2020: the United States, China, and the United Arab Emirates.
- SpaceX has discussed executing both manned and unmanned Mars missions this decade, though the company describes these dates as "aspirational."
- Each space agency plans to study a different aspect of Mars, though searching for signs of past life is a common theme among the missions.
Putting humans on Mars is the next giant leap in space exploration, yet it remains a far-off goal for national and private space agencies. There's no shortage of complications. With all the economic, technological, and safety hurdles to overcome, some critics say sending manned missions to the Red planet simply doesn't make sense. This thinking explains, in part, why NASA's current long-term strategy is to first return astronauts to the moon in order to "demonstrate capabilities required for human missions to Mars and other destinations."
But that hasn't stopped space agencies from planning unmanned Mars missions for the near future and, more aspirationally, manned missions after that.
Three unmanned Mars missions are set to launch in summer 2020. The timing is no coincidence: Once every two years, Earth and Mars come especially close together because their orbits are "at opposition," which is when the Earth-Mars distance is smallest during the 780-day synodic period. This is an opportune window to send spacecraft to Mars.
As far as a manned mission to Mars? It could happen in the 2020s, but that seems unlikely. But whenever it does, it could mark the beginning of an era where humans live on the Red planet in permanent, large-scale settlements. For example, by 2117, the U.A.E. wants to build a massive Martian city of 600,000 inhabitants, while SpaceX CEO Elon Musk has said that it is "possible to make a self-sustaining city on Mars by 2050, if we start in 5 years & take 10 orbital synchronizations."
For now, three space agencies plan to launch unmanned Mars missions in 2020, while several others hope to launch Martian projects later in the decade.
NASA
This summer, NASA plans to send an unmanned rover to the Red planet for its Mars 2020 mission. A key objective of this mission, which will include deploying a small autonomous helicopter, is to find evidence of extraterrestrial life, not only by "seeking signs of habitable conditions on Mars in the ancient past, but also searching for signs of past microbial life itself," NASA writes on its website.
But the agency doesn't plan to send people to Mars anytime soon. NASA first wants to return humans to the moon, aiming to "land astronauts on the surface no later than the late 2020s." The agency has no official timeline for putting humans on Mars, and a 2019 report suggested the late 2030s is the earliest it could do so.
Mars Exploration Rover – A
As of May 2020, NASA's Curiosity rover is still operational, roaming the martian surface at top speeds of 0.086 mph.
China
In 2019, China successfully landed a rover on the dark side of the moon. This summer, the nation has its sights on an even more ambitious goal: sending an orbiter, lander, and rover to Mars in one trip, something no nation has done before. The mission is called Tianwen-1, meaning "questions to heaven," and its aim is to search for pockets of water below the Martian surface, while also looking for signs of ancient life.
United Arab Emirates
In July 2020, the U.A.E.'s Mohammed bin Rashid Space Centre plans to launch the Hope Mars Mission, which includes a probe that would orbit Mars and study its weather patterns. For the U.A.E., the mission is designed to push the country toward a knowledge-based economy.
"Going to Mars was not the main objective," Omran Sharaf, mission lead for the Hope spacecraft, which is also known as the Emirates Mars Mission, told Space.com. "It's a means for a bigger goal: to expedite the development in our educational sector, academic sector."
The Hope Mars Mission, if successful, would be the first mission to Mars by any West Asian, Arab, or Muslim-majority country.
Japan
In 2024, the Japanese Aerospace Exploration Agency (JAXA) plans to launch a uniquely bold interplanetary mission that will involve sending a probe to orbit Mars, landing on the Martian moon Phobos, collecting surface samples, and then returning those samples to Earth in 2029. JAXA says the mission has two main objectives:
- To investigate whether the Martian moons are captured asteroids or fragments that coalesced after a giant impact with Mars, and to acquire new knowledge on the formation process of Mars and the terrestrial planets.
- To clarify the mechanisms controlling the surface evolution of the Martian moons and Mars, and to gain new insights into the history of the Mars Sphere, including that of the Martian moons.
An improved, color enhanced version of the 360-degree Gallery Pan taken by Mars Pathfinder in 1997.
SpaceX
Elon Musk's aerospace company has its eyes on two Mars voyages: a cargo-only mission in 2022, and a human mission in 2024. The second mission would involve building a propellant depot and preparing a site for future crewed flights. But the company describes these dates as "aspirational." After all, SpaceX plans to use its Starship spacecraft to send Japanese billionaire Yukazu Maezawa and a handful of artists into lunar orbit in 2023. Musk has suggested this trip would be Starship's first mission.
@AstrumMining @SPEXcast @McMurchie @Robotbeat @John_Gardi @SpaceX Moon first, Mars as soon as the planets align— Elon Musk (@Elon Musk)1549864554.0
Regarding the long-term future of humans on the Red planet, Musk once told Ars Technica:
"I'll probably be long dead before Mars becomes self-sustaining. But I'd like to at least be around to see a bunch of ships land on Mars."
Russia and the European Union
Roscosmos and the European Space Agency plan to send a Russian lander and a European rover to the Martian surface in 2022 as part of ExoMars. The mission aims to find out if there has ever been life on Mars, and also to understand the history of water on the planet. It's part of a long-term Mars project that began in 2016. This second phase was initially planned for 2020, but due in part to the COVID-19 pandemic, the space agencies decided to postpone the mission by two years.
"We want to make ourselves 100% sure of a successful mission. We cannot allow ourselves any margin of error. More verification activities will ensure a safe trip and the best scientific results on Mars," said ESA Director General Jan Wörner.
India
In 2014, the Indian Space Research Organization executed its first interplanetary trip with its Mars Orbiter Mission. It marked the first time an Asian nation reached Martian orbit, and also the first time a nation successfully reached the Red planet on its maiden voyage. India has plans for a follow-up Mars Orbiter Mission 2, but it remains unclear when that will occur, and what the mission will entail. Some reports suggest the mission will include a rover and lander, in addition to an orbiter.
- Elon Musk: Ticket to Mars will cost about $200,000 - Big Think ›
- Nuclear-powered Mars rover to search for old life, prepare for ... ›
- The Mission to Mars is Now a Crowdfunded Reality Show - Big Think ›
- Take a simulated tour in a Mars rover - Big Think ›
There are 5 eras in the universe's lifecycle. Right now, we're in the second era.
Astronomers find these five chapters to be a handy way of conceiving the universe's incredibly long lifespan.
Image based on logarithmic maps of the Universe put together by Princeton University researchers, and images produced by NASA based on observations made by their telescopes and roving spacecraft
- We're in the middle, or thereabouts, of the universe's Stelliferous era.
- If you think there's a lot going on out there now, the first era's drama makes things these days look pretty calm.
- Scientists attempt to understand the past and present by bringing together the last couple of centuries' major schools of thought.
The 5 eras of the universe
<p>There are many ways to consider and discuss the past, present, and future of the universe, but one in particular has caught the fancy of many astronomers. First published in 1999 in their book <a href="https://amzn.to/2wFQLiL" target="_blank"><em>The Five Ages of the Universe: Inside the Physics of Eternity</em></a>, <a href="https://en.wikipedia.org/wiki/Fred_Adams" target="_blank">Fred Adams</a> and <a href="https://en.wikipedia.org/wiki/Gregory_P._Laughlin" target="_blank">Gregory Laughlin</a> divided the universe's life story into five eras:</p><ul><li>Primordial era</li><li>Stellferous era</li><li>Degenerate era</li><li>Black Hole Era</li><li>Dark era</li></ul><p>The book was last updated according to current scientific understandings in 2013.</p><p>It's worth noting that not everyone is a subscriber to the book's structure. Popular astrophysics writer <a href="https://www.forbes.com/sites/ethansiegel/#30921c93683e" target="_blank">Ethan C. Siegel</a>, for example, published an article on <a href="https://www.forbes.com/sites/startswithabang/2019/07/26/we-have-already-entered-the-sixth-and-final-era-of-our-universe/#7072d52d4e5d" target="_blank"><em>Medium</em></a> last June called "We Have Already Entered The Sixth And Final Era Of Our Universe." Nonetheless, many astronomers find the quintet a useful way of discuss such an extraordinarily vast amount of time.</p>The Primordial era
<img type="lazy-image" data-runner-src="https://assets.rebelmouse.io/eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJpbWFnZSI6Imh0dHBzOi8vYXNzZXRzLnJibC5tcy8yMjkwMTEyMi9vcmlnaW4uanBnIiwiZXhwaXJlc19hdCI6MTYyNjEzMjY1OX0.PRpvAoa99qwsDNprDme9tBWDim6mS7Mjx6IwF60fSN8/img.jpg?width=980" id="db4eb" class="rm-shortcode" data-rm-shortcode-id="0e568b0cc12ed624bb8d7e5ff45882bd" data-rm-shortcode-name="rebelmouse-image" data-width="1440" data-height="1049" />Image source: Sagittarius Production/Shutterstock
<p> This is where the universe begins, though what came before it and where it came from are certainly still up for discussion. It begins at the Big Bang about 13.8 billion years ago. </p><p> For the first little, and we mean <em>very</em> little, bit of time, spacetime and the laws of physics are thought not yet to have existed. That weird, unknowable interval is the <a href="https://www.universeadventure.org/eras/era1-plankepoch.htm" target="_blank">Planck Epoch</a> that lasted for 10<sup>-44</sup> seconds, or 10 million of a trillion of a trillion of a trillionth of a second. Much of what we currently believe about the Planck Epoch eras is theoretical, based largely on a hybrid of general-relativity and quantum theories called quantum gravity. And it's all subject to revision. </p><p> That having been said, within a second after the Big Bang finished Big Banging, inflation began, a sudden ballooning of the universe into 100 trillion trillion times its original size. </p><p> Within minutes, the plasma began cooling, and subatomic particles began to form and stick together. In the 20 minutes after the Big Bang, atoms started forming in the super-hot, fusion-fired universe. Cooling proceeded apace, leaving us with a universe containing mostly 75% hydrogen and 25% helium, similar to that we see in the Sun today. Electrons gobbled up photons, leaving the universe opaque. </p><p> About 380,000 years after the Big Bang, the universe had cooled enough that the first stable atoms capable of surviving began forming. With electrons thus occupied in atoms, photons were released as the background glow that astronomers detect today as cosmic background radiation. </p><p> Inflation is believed to have happened due to the remarkable overall consistency astronomers measure in cosmic background radiation. Astronomer <a href="https://www.youtube.com/watch?v=IGCVTSQw7WU" target="_blank">Phil Plait</a> suggests that inflation was like pulling on a bedsheet, suddenly pulling the universe's energy smooth. The smaller irregularities that survived eventually enlarged, pooling in denser areas of energy that served as seeds for star formation—their gravity pulled in dark matter and matter that eventually coalesced into the first stars. </p>The Stelliferous era
<img type="lazy-image" data-runner-src="https://assets.rebelmouse.io/eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJpbWFnZSI6Imh0dHBzOi8vYXNzZXRzLnJibC5tcy8yMjkwMTEzNy9vcmlnaW4uanBnIiwiZXhwaXJlc19hdCI6MTYxMjA0OTcwMn0.GVCCFbBSsPdA1kciHivFfWlegOfKfXUfEtFKEF3otQg/img.jpg?width=980" id="bc650" class="rm-shortcode" data-rm-shortcode-id="c8f86bf160ecdea6b330f818447393cd" data-rm-shortcode-name="rebelmouse-image" data-width="481" data-height="720" />Image source: Casey Horner/unsplash
<p>The era we know, the age of stars, in which most matter existing in the universe takes the form of stars and galaxies during this active period. </p><p>A star is formed when a gas pocket becomes denser and denser until it, and matter nearby, collapse in on itself, producing enough heat to trigger nuclear fusion in its core, the source of most of the universe's energy now. The first stars were immense, eventually exploding as supernovas, forming many more, smaller stars. These coalesced, thanks to gravity, into galaxies.</p><p>One axiom of the Stelliferous era is that the bigger the star, the more quickly it burns through its energy, and then dies, typically in just a couple of million years. Smaller stars that consume energy more slowly stay active longer. In any event, stars — and galaxies — are coming and going all the time in this era, burning out and colliding.</p><p>Scientists predict that our Milky Way galaxy, for example, will crash into and combine with the neighboring Andromeda galaxy in about 4 billion years to form a new one astronomers are calling the Milkomeda galaxy.</p><p>Our solar system may actually survive that merger, amazingly, but don't get too complacent. About a billion years later, the Sun will start running out of hydrogen and begin enlarging into its red giant phase, eventually subsuming Earth and its companions, before shrining down to a white dwarf star.</p>The Degenerate era
<img type="lazy-image" data-runner-src="https://assets.rebelmouse.io/eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJpbWFnZSI6Imh0dHBzOi8vYXNzZXRzLnJibC5tcy8yMjkwMTE1MS9vcmlnaW4uanBnIiwiZXhwaXJlc19hdCI6MTYxNTk3NDQyN30.gy4__ALBQrdbdm-byW5gQoaGNvFTuxP5KLYxEMBImNc/img.jpg?width=980" id="77f72" class="rm-shortcode" data-rm-shortcode-id="08bb56ea9fde2cee02d63ed472d79ca3" data-rm-shortcode-name="rebelmouse-image" data-width="1440" data-height="810" />Image source: Diego Barucco/Shutterstock/Big Think
<p>Next up is the Degenerate era, which will begin about 1 quintillion years after the Big Bang, and last until 1 duodecillion after it. This is the period during which the remains of stars we see today will dominate the universe. Were we to look up — we'll assuredly be outta here long before then — we'd see a much darker sky with just a handful of dim pinpoints of light remaining: <a href="https://earthsky.org/space/evaporating-giant-exoplanet-white-dwarf-star" target="_blank">white dwarfs</a>, <a href="https://earthsky.org/space/new-observations-where-stars-end-and-brown-dwarfs-begin" target="_blank">brown dwarfs</a>, and <a href="https://earthsky.org/astronomy-essentials/definition-what-is-a-neutron-star" target="_blank">neutron stars</a>. These"degenerate stars" are much cooler and less light-emitting than what we see up there now. Occasionally, star corpses will pair off into orbital death spirals that result in a brief flash of energy as they collide, and their combined mass may become low-wattage stars that will last for a little while in cosmic-timescale terms. But mostly the skies will be be bereft of light in the visible spectrum.</p><p>During this era, small brown dwarfs will wind up holding most of the available hydrogen, and black holes will grow and grow and grow, fed on stellar remains. With so little hydrogen around for the formation of new stars, the universe will grow duller and duller, colder and colder.</p><p>And then the protons, having been around since the beginning of the universe will start dying off, dissolving matter, leaving behind a universe of subatomic particles, unclaimed radiation…and black holes.</p>The Black Hole era
<img type="lazy-image" data-runner-src="https://assets.rebelmouse.io/eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJpbWFnZSI6Imh0dHBzOi8vYXNzZXRzLnJibC5tcy8yMjkwMTE2MS9vcmlnaW4uanBnIiwiZXhwaXJlc19hdCI6MTYzMjE0OTQ2MX0.ifwOQJgU0uItiSRg9z8IxFD9jmfXlfrw6Jc1y-22FuQ/img.jpg?width=980" id="103ea" class="rm-shortcode" data-rm-shortcode-id="f0e6a71dacf95ee780dd7a1eadde288d" data-rm-shortcode-name="rebelmouse-image" data-width="1400" data-height="787" />Image source: Vadim Sadovski/Shutterstock/Big Think
<p> For a considerable length of time, black holes will dominate the universe, pulling in what mass and energy still remain. </p><p> Eventually, though, black holes evaporate, albeit super-slowly, leaking small bits of their contents as they do. Plait estimates that a small black hole 50 times the mass of the sun would take about 10<sup>68</sup> years to dissipate. A massive one? A 1 followed by 92 zeros. </p><p> When a black hole finally drips to its last drop, a small pop of light occurs letting out some of the only remaining energy in the universe. At that point, at 10<sup>92</sup>, the universe will be pretty much history, containing only low-energy, very weak subatomic particles and photons. </p>The Dark Era
<img type="lazy-image" data-runner-src="https://assets.rebelmouse.io/eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJpbWFnZSI6Imh0dHBzOi8vYXNzZXRzLnJibC5tcy8yMjkwMTE5NC9vcmlnaW4uanBnIiwiZXhwaXJlc19hdCI6MTY0Mzg5OTEyMH0.AwiPRGJlGIcQjjSoRLi6V3g5klRYtxQJIpHFgZdZkuo/img.jpg?width=980" id="60c77" class="rm-shortcode" data-rm-shortcode-id="7a857fb7f0d85cf4a248dbb3350a6e1c" data-rm-shortcode-name="rebelmouse-image" data-width="1440" data-height="810" />Image source: Big Think
<p>We can sum this up pretty easily. Lights out. Forever.</p>Dark energy: The apocalyptic wild card of the universe
Dr. Katie Mack explains what dark energy is and two ways it could one day destroy the universe.
- The universe is expanding faster and faster. Whether this acceleration will end in a Big Rip or will reverse and contract into a Big Crunch is not yet understood, and neither is the invisible force causing that expansion: dark energy.
- Physicist Dr. Katie Mack explains the difference between dark matter, dark energy, and phantom dark energy, and shares what scientists think the mysterious force is, its effect on space, and how, billions of years from now, it could cause peak cosmic destruction.
- The Big Rip seems more probable than a Big Crunch at this point in time, but scientists still have much to learn before they can determine the ultimate fate of the universe. "If we figure out what [dark energy is] doing, if we figure out what it's made of, how it's going to change in the future, then we will have a much better idea for how the universe will end," says Mack.
Astrophysicists find unique "hot Jupiter" planet without clouds
A unique exoplanet without clouds or haze was found by astrophysicists from Harvard and Smithsonian.
Illustration of WASP-62b, the Jupiter-like planet without clouds or haze in its atmosphere.
- Astronomers from Harvard and Smithsonian find a very rare "hot Jupiter" exoplanet without clouds or haze.
- Such planets were formed differently from others and offer unique research opportunities.
- Only one other such exoplanet was found previously.
Munazza Alam – a graduate student at the Center for Astrophysics | Harvard & Smithsonian.
Credit: Jackie Faherty
Jupiter's Colorful Cloud Bands Studied by Spacecraft
<span style="display:block;position:relative;padding-top:56.25%;" class="rm-shortcode" data-rm-shortcode-id="8a72dfe5b407b584cf867852c36211dc"><iframe type="lazy-iframe" data-runner-src="https://www.youtube.com/embed/GzUzCesfVuw?rel=0" width="100%" height="auto" frameborder="0" scrolling="no" style="position:absolute;top:0;left:0;width:100%;height:100%;"></iframe></span>Five collectibles with better returns than the stock market
People often make a killing in stocks, but there are other ways to potentially turn major profits.
