Dogs take shortcuts based on Earth’s magnetic fields

New research sees dogs checking a North-South axis on their way home.

brown dog running
Image source: BIGANDT.COM/Shutterstock
  • As dogs navigate, they appear to be using the Earth's magnetic fields.
  • 170 dogs orient themselves to north and south as they plot shortcuts back to their people.
  • Dogs join the growing number of magnetism-sensitive animals.

It's been known for a while that some animals — migratory birds, mole rats, and lobsters among them — use the Earth's magnetic fields to navigate. There's even some evidence suggesting we do, too. In 2013, zoologist Hynek Burda found that dogs tend to poop and pee along a north-south axis, although at least some dogs (including our own Lulu) don't agree. New research indicates that dogs also orient themselves to the Earth's magnetic field as they invent shortcuts to get from place to place.

The research comes from Kateřina Benediktová of the Czech University of Life Sciences Prague — Burda is her PhD adviser — and is published in eLife.

Guessing the secrets of canine navigators

That dogs have excellent navigational talents is nothing new. The study recalls "messenger dogs" that were relied on during World War I to ferry sensitive communiqués back and forth across battle lines. In addition, of course, hunting dogs, or "scent hounds," have long exhibited the ability to return to their owners' positions, and previous studies have shown that they often devise new return routes, as opposed to simply retracing their steps. How they do this has been a bit mysterious, as the study notes: "Dogs often homed using novel routes and/or shortcuts, ruling out route reversal strategies, and making olfactory tracking and visual piloting unlikely."

In trying to figure out how dogs do what they do, researchers have divided their methods into three possible modes:

  • tracking — following their own scent trail back to their point of origin
  • scouting — searching for a new, shorter way back to their point of origin
  • visual piloting — using landmarks to find their way back

Benediktová's research began when she put video cameras and GPS trackers on four dogs, took them out into the forest, and set them loose. As might be expected, they took off in pursuit of some interesting scent. All of the dogs eventually returned. She mapped the collected GPS data, seeing runs of both tracking and scouting.

However, when she showed her maps to Burda, he noticed something else. Just before scouting their way back, the dogs did something odd: They ran for roughly 20 meters along a precise north-south axis, as if orienting themselves, before returning to Benediktová. Without some form of magnetic sensitivity, this would not be possible.

Image source: Benediktová, et al

Testing the theory

A sample of four dogs is hardly definitive, so student and advisor developed a larger study involving 27 dogs who were taken on several hundred scouting trips over the course of three years. The dogs were typically taken to locales with which they had no familiarity, and the researchers avoided tipping off the canines with any navigational clues including the avoidance of situations in which wind could carry their scent toward the dogs. The researchers also hid after releasing their charges to make sure they weren't visible to the pooches.

In the end, the researchers documented 223 scouting runs in which the dogs averaged a return to their points of origin of about 1.1 kilometers (around 0.7 miles).

In 170 of these runs, the dogs did indeed repeat the smaller sample's behavior, running about 20 meters along a north-south axis. Just as intriguingly, it was these dogs who found the fastest, most direct route back. "I'm really quite impressed with the data," biologist Catherine Lohmann of the University of North Carolina, Chapel Hill, who was not involved in the study, tells Science.

Burda considers the dogs' seeming reliance on their north-south jog to be pretty convincing: "It's the most plausible explanation."

Proving the theory

Commenting on the research, dog behaviorist Adam Miklósi at Eötvös Loránd University tells Science, "The problem is that in order to 100% prove the magnetic sense, or any sense, you have to exclude all the others."

Given the difficulties of doing that, Benediktová and Burda intend to test their hypothesis from the other direction, seeing if they can confuse dogs' magnetnoreception by placing magnets on their collars and repeating the tests — if they no longer do their little north-south jog, a reliance on the Earth's magnetic field would look even more likely.

How New York's largest hospital system is predicting COVID-19 spikes

Northwell Health is using insights from website traffic to forecast COVID-19 hospitalizations two weeks in the future.

Credit: Getty Images
Sponsored by Northwell Health
  • The machine-learning algorithm works by analyzing the online behavior of visitors to the Northwell Health website and comparing that data to future COVID-19 hospitalizations.
  • The tool, which uses anonymized data, has so far predicted hospitalizations with an accuracy rate of 80 percent.
  • Machine-learning tools are helping health-care professionals worldwide better constrain and treat COVID-19.
Keep reading Show less

Listen: Scientists re-create voice of 3,000-year-old Egyptian mummy

Scientists used CT scanning and 3D-printing technology to re-create the voice of Nesyamun, an ancient Egyptian priest.

Surprising Science
  • Scientists printed a 3D replica of the vocal tract of Nesyamun, an Egyptian priest whose mummified corpse has been on display in the UK for two centuries.
  • With the help of an electronic device, the reproduced voice is able to "speak" a vowel noise.
  • The team behind the "Voices of the Past" project suggest reproducing ancient voices could make museum experiences more dynamic.
Keep reading Show less

Dark matter axions possibly found near Magnificent 7 neutron stars

A new study proposes mysterious axions may be found in X-rays coming from a cluster of neutron stars.

A rendering of the XMM-Newton (X-ray multi-mirror mission) space telescope.

Credit: D. Ducros; ESA/XMM-Newton, CC BY-SA 3.0 IGO
Surprising Science
  • A study led by Berkeley Lab suggests axions may be present near neutron stars known as the Magnificent Seven.
  • The axions, theorized fundamental particles, could be found in the high-energy X-rays emitted from the stars.
  • Axions have yet to be observed directly and may be responsible for the elusive dark matter.
  • Keep reading Show less

    Put on a happy face? “Deep acting” associated with improved work life

    New research suggests you can't fake your emotional state to improve your work life — you have to feel it.

    Credit: Columbia Pictures
    Personal Growth
  • Deep acting is the work strategy of regulating your emotions to match a desired state.
  • New research suggests that deep acting reduces fatigue, improves trust, and advances goal progress over other regulation strategies.
  • Further research suggests learning to attune our emotions for deep acting is a beneficial work-life strategy.
  • Keep reading Show less
    Surprising Science

    World's oldest work of art found in a hidden Indonesian valley

    Archaeologists discover a cave painting of a wild pig that is now the world's oldest dated work of representational art.

    Scroll down to load more…