Self-Motivation
David Goggins
Former Navy Seal
Career Development
Bryan Cranston
Actor
Critical Thinking
Liv Boeree
International Poker Champion
Emotional Intelligence
Amaryllis Fox
Former CIA Clandestine Operative
Management
Chris Hadfield
Retired Canadian Astronaut & Author
Learn
from the world's big
thinkers
Start Learning

A new theory explains Jupiter’s perplexing origin

A new computer model solves a pair of Jovian riddles.

(NASA/JPL-Caltech/SwRI/MSSS/Kevin M. Gill)
  • Astronomers have wondered how a gas giant like Jupiter could sit in the middle of our solar system's planets.
  • Also unexplained has been the pair of asteroid clusters in front of and behind Jupiter in its orbit.
  • Putting the two questions together revealed the answer to both.

Jupiter's long been a puzzler to astronomers. Planet formation theory holds that a gas giant forms far away from its star then moves inward over time until it's in a tight orbit around the sun. Jupiter, though, sits right in the middle of our solar system's planets, between Mars and Saturn. And that's not all that's odd: There's an unexpectedly asymmetrical pair of asteroid clusters — known as the Trojan asteroids — preceding and trailing Jupiter in its orbit. The group in front is 50% larger than the one in back. The most widely accepted idea was that Jupiter formed near the Sun and moved outwards.

That's now been turned on its head by a team of scientists from Lund University who ran a series of models to try to identify a plausible origin story for Jupiter. They discovered that the planet and its clusters would be where they are under only one scenario: Jupiter forming way out near Uranus — as gas giants are supposed to do, after all — and moving slowly toward the Sun, attracting and accreting the asteroids that now form its core, with the leftovers trailing behind. Lead author Simona Pirani says, "This is the first time we have proof that Jupiter was formed a long way from the Sun and then migrated to its current orbit." Including the mystery of the asymmetrical Trojans in the simulations was the key.

Modeling history

Jupiter, right in the middle of everything.

(Christos Georghiou/Shutterstock)

The model that lands Jupiter where it is today, along with its thousand of Trojans, begins four times further away from the Sun than Jupiter currently orbits, just inside of Uranus' orbit. Jupiter first took form about 4.5 billion years back as an icy planetary seedling, an ice asteroid, no bigger than Earth. Somewhere between two and three million years later, the future giant began spiraling slowly inward toward the Sun, pulled by gases circulating throughout the solar system. It took about 700,000 years to get where it is now. Along the way, before it developed its gaseous atmosphere and massive size, Jupiter's gravity pulled the Trojans in — the researchers expect Jupiter's core to be composed of materials similar to the Trojans. They're believed to be rich with dark carbon compounds, and likely rich in water and other volatile materials beneath an outer layer of dust.

Lucy in the sky with Trojans

Trojan clusters held in place by the Sun and Jupiter

(Astronomical Institute of CAS/Petr Scheirich)

In October 2021, NASA plans to launch its Lucy mission to study the Trojans. It's believed that they're very old time capsules from the universe of four billion years ago. The craft will study seven of them: one from the solar system's main asteroid belt, and the remaining six from the clusters leading and following Jupiter in its orbit.

Those two Trojan groups are held in place at stable LaGrange points by the combined gravitation pull of the Sun and Jupiter acting together as a single centrifugal force acting upon them.

NASA has high hopes for the mission as chance to get a closeup look at the type of materials from which our planetary bodies formed.

Meanwhile, Jupiter's seeming a little bit less mysterious now, at least in terms of its origin. It may also be that ice giants Uranus and Neptune, as well as Saturn, have a similar history.

Why are so many objects in space shaped like discs?

None

LIVE TOMORROW | Jordan Klepper: Comedians vs. the apocalypse

Join The Daily Show comedian Jordan Klepper and elite improviser Bob Kulhan live at 1 pm ET on Tuesday, July 14!

Big Think LIVE

Add event to calendar

AppleGoogleOffice 365OutlookOutlook.comYahoo

Keep reading Show less

Scientists see 'rarest event ever recorded' in search for dark matter

The team caught a glimpse of a process that takes 18,000,000,000,000,000,000,000 years.

Image source: Pixabay
Surprising Science
  • In Italy, a team of scientists is using a highly sophisticated detector to hunt for dark matter.
  • The team observed an ultra-rare particle interaction that reveals the half-life of a xenon-124 atom to be 18 sextillion years.
  • The half-life of a process is how long it takes for half of the radioactive nuclei present in a sample to decay.
Keep reading Show less

LGBTQ+ community sees spike in first-time depression in wake of coronavirus​

Gender and sexual minority populations are experiencing rising anxiety and depression rates during the pandemic.

Photo by Chip Somodevilla/Getty Images
Coronavirus
  • Anxiety and depression rates are spiking in the LGBTQ+ community, and especially in individuals who hadn't struggled with those issues in the past.
  • Overall, depression increased by an average PHQ-9 score of 1.21 and anxiety increased by an average GAD-7 score of 3.11.
  • The researchers recommended that health care providers check in with LGBTQ+ patients about stress and screen for mood and anxiety disorders—even among those with no prior history of anxiety or depression.
Keep reading Show less

The mind-blowing science of black holes

What we know about black holes is both fascinating and scary.

Videos
  • When it comes to black holes, science simultaneously knows so much and so little, which is why they are so fascinating. Focusing on what we do know, this group of astronomers, educators, and physicists share some of the most incredible facts about the powerful and mysterious objects.
  • A black hole is so massive that light (and anything else it swallows) can't escape, says Bill Nye. You can't see a black hole, theoretical physicists Michio Kaku and Christophe Galfard explain, because it is too dark. What you can see, however, is the distortion of light around it caused by its extreme gravity.
  • Explaining one unsettling concept from astrophysics called spaghettification, astronomer Michelle Thaller says that "If you got close to a black hole there would be tides over your body that small that would rip you apart into basically a strand of spaghetti that would fall down the black hole."

Scroll down to load more…
Quantcast