How to colonize Venus, and why it's a better plan than Mars

Venus: Hot, toxic, hellish... home?

  • When we think of colonizing space, our first thoughts are to the Moon and Mars.
  • Venus, despite being incredibly inhospitable on the surface, might actually be a better target for colonization.
  • Suspending blimps in the Venusian clouds is not only feasible, but offers some of the most Earth-like conditions in the solar system.

Venus, the second planet from our sun, is a downright terrifying place. Its atmosphere is almost all carbon dioxide, with the exception of the clouds that rain sulfuric acid. Its surface is a foggy, yellow desert dotted by volcanoes many times larger than those found on Earth. Its mean surface temperature reaches a blistering 860 degrees Fahrenheit. But despite these inhospitable conditions, Venus may be one of the best spots for humans to settle in our solar system.

Settling on a hellish planet

ESA/NASA

An artist's rendering of the surface of Venus.

While the two may not seem alike at first blush, Venus is quite similar to Earth compared to other planets in our solar system. So much so, the Morning Star is sometimes called Earth's "sister planet". Its gravity is 90% as strong as Earth's, compared to Mars' ~38%, meaning that our muscles won't atrophy, and our bones won't decalcify as they do in low-gravity environments. It's roughly the same size as Earth, and it's the closest planet in our solar neighborhood.

This makes Venus a tempting target for future colonization, but what about all of those deadly characteristics mentioned above? It's hard to imagine life in an atmosphere full of carbon dioxide, with no water, and at incredible heat. Not to mention that if you were to stand on its surface, the weight of the Venusian atmosphere would be the same as diving 3,000 feet underwater (which you don't want to try). There's no arguing that the surface of Venus is brutal. That's why we wouldn't live on Venus's surface.

Instead, a hypothetical Venusian colony would be suspended by blimps floating 31 miles above the surface. This might seem farfetched, but it isn't entirely science fiction. While there are plenty of challenges associated with living above the surface of Venus, in many ways, establishing a colony in the clouds of Venus would be easier than doing so on the surface of Mars. Here's why.

Paradise in the clouds

In Venus's upper atmosphere, the pressure would be about 1,000 hectopascals (hPa), which is extremely close to Earth's 1013 hPa at sea level. Not only will humans be able to tolerate this exceedingly well, but since the pressure outside a blimp would be close to that inside the blimp, any punctures would result in a repairable leak rather than a catastrophic explosion. As an analogy, you can consider this like opening the door to an airplane on the runway compared to doing so during a flight. Above the surface's crushing pressure, the temperature would be much more manageable, too, ranging from 32 to 122 degrees Fahrenheit.

These qualities mean that a human could happily work outside the habitat, so long as they had air to breathe and protection from the clouds of sulfuric acid. Acid rain might seem like a problem, but there are plenty of easily constructed materials resistant to such acid, like polytetrafluorine—also known as Teflon.

What about water? Venus barely has any, unfortunately. But those deadly clouds made of sulfuric acid also present an opportunity. Sulfuric acid is made of hydrogen, sulfur, and oxygen molecules. Through electrolysis, these molecules can be separated and recombined to form water, leaving only sulfur as a waste product. As for oxygen, Venus has an abundance of carbon dioxide and nitrogen, which can be used to grow plants for producing breathable air and food.

Venus' atmosphere would also provide shielding from cosmic radiation, which can both scramble human brains over time and irradiate food, soil, and pretty much everything else. Mars, unfortunately, has a very thin atmosphere, which would not provide this benefit.

Full-scale colonization

JAXA/NASA/Lockheed Martin

It's nice to know that exploring Venus through manned missions is possible, but our long-term goal of becoming an interplanetary species and establishing a colony must be more challenging. Generating the lift for entire cities to float in the Venusian clouds seems like it would be a monumental feat of engineering. To be sure, it would be hard, but not quite as hard as one would think.

Geoffrey Landis, a NASA scientist and science-fiction author who studied the feasibility of human colonies on Venus, explained that floating a city 31 miles above the planet's surface would be relatively straightforward. Because Venus' atmosphere is mostly carbon dioxide, a mixture of oxygen and nitrogen—the regular air you're breathing now—could easily generate the necessary lift. "A one-kilometer diameter spherical [balloon] will lift 700,000 tons—two Empire State Buildings. A two-kilometer diameter [balloon] would lift six million tons," writes Landis.

What's more, Landis says, "Venus has plenty of room. A billion habitats, each one with a population of hundreds of thousands of humans, could be placed [to] float in the Venus atmosphere."

Of course, none of this will be happening any time soon. While this colony would work in theory, we still need to learn more about Venus. Mars takes up much of the limelight in our interplanetary exploration, while most missions to Venus were made decades ago by Soviet probes. NASA does have a plan for a 30-day crewed mission to Venus called the High-Altitude Venus Operational Concept (HAVOC), but this project is sadly inactive. As we gear up to establish colonies on the moon and on Mars, however, hopefully we keep our sister planet in mind.


Big Think
Sponsored by Lumina Foundation

Upvote/downvote each of the videos below!

As you vote, keep in mind that we are looking for a winner with the most engaging social venture pitch - an idea you would want to invest in.

Keep reading Show less

Essential financial life skills for 21st-century Americans

Having these financial life skills can help you navigate challenging economic environments.

Photo by Jp Valery on Unsplash
Personal Growth
  • Americans are swimming in increasingly higher amounts of debt, even the upper middle class.
  • For many, this burden can be alleviated by becoming familiar with some straightforward financial concepts.
  • Here's some essential financial life skills needed to ensure your economic wellbeing.
Keep reading Show less

Scientists create a "lifelike" material that has metabolism and can self-reproduce

An innovation may lead to lifelike evolving machines.

Shogo Hamada/Cornell University
Surprising Science
  • Scientists at Cornell University devise a material with 3 key traits of life.
  • The goal for the researchers is not to create life but lifelike machines.
  • The researchers were able to program metabolism into the material's DNA.
Keep reading Show less

New fossils suggest human ancestors evolved in Europe, not Africa

Experts argue the jaws of an ancient European ape reveal a key human ancestor.

Surprising Science
  • The jaw bones of an 8-million-year-old ape were discovered at Nikiti, Greece, in the '90s.
  • Researchers speculate it could be a previously unknown species and one of humanity's earliest evolutionary ancestors.
  • These fossils may change how we view the evolution of our species.

Homo sapiens have been on earth for 200,000 years — give or take a few ten-thousand-year stretches. Much of that time is shrouded in the fog of prehistory. What we do know has been pieced together by deciphering the fossil record through the principles of evolutionary theory. Yet new discoveries contain the potential to refashion that knowledge and lead scientists to new, previously unconsidered conclusions.

A set of 8-million-year-old teeth may have done just that. Researchers recently inspected the upper and lower jaw of an ancient European ape. Their conclusions suggest that humanity's forebearers may have arisen in Europe before migrating to Africa, potentially upending a scientific consensus that has stood since Darwin's day.

Rethinking humanity's origin story

The frontispiece of Thomas Huxley's Evidence as to Man's Place in Nature (1863) sketched by natural history artist Benjamin Waterhouse Hawkins. (Photo: Wikimedia Commons)

As reported in New Scientist, the 8- to 9-million-year-old hominin jaw bones were found at Nikiti, northern Greece, in the '90s. Scientists originally pegged the chompers as belonging to a member of Ouranopithecus, an genus of extinct Eurasian ape.

David Begun, an anthropologist at the University of Toronto, and his team recently reexamined the jaw bones. They argue that the original identification was incorrect. Based on the fossil's hominin-like canines and premolar roots, they identify that the ape belongs to a previously unknown proto-hominin.

The researchers hypothesize that these proto-hominins were the evolutionary ancestors of another European great ape Graecopithecus, which the same team tentatively identified as an early hominin in 2017. Graecopithecus lived in south-east Europe 7.2 million years ago. If the premise is correct, these hominins would have migrated to Africa 7 million years ago, after undergoing much of their evolutionary development in Europe.

Begun points out that south-east Europe was once occupied by the ancestors of animals like the giraffe and rhino, too. "It's widely agreed that this was the found fauna of most of what we see in Africa today," he told New Scientists. "If the antelopes and giraffes could get into Africa 7 million years ago, why not the apes?"

He recently outlined this idea at a conference of the American Association of Physical Anthropologists.

It's worth noting that Begun has made similar hypotheses before. Writing for the Journal of Human Evolution in 2002, Begun and Elmar Heizmann of the Natural history Museum of Stuttgart discussed a great ape fossil found in Germany that they argued could be the ancestor (broadly speaking) of all living great apes and humans.

"Found in Germany 20 years ago, this specimen is about 16.5 million years old, some 1.5 million years older than similar species from East Africa," Begun said in a statement then. "It suggests that the great ape and human lineage first appeared in Eurasia and not Africa."

Migrating out of Africa

In the Descent of Man, Charles Darwin proposed that hominins descended out of Africa. Considering the relatively few fossils available at the time, it is a testament to Darwin's astuteness that his hypothesis remains the leading theory.

Since Darwin's time, we have unearthed many more fossils and discovered new evidence in genetics. As such, our African-origin story has undergone many updates and revisions since 1871. Today, it has splintered into two theories: the "out of Africa" theory and the "multi-regional" theory.

The out of Africa theory suggests that the cradle of all humanity was Africa. Homo sapiens evolved exclusively and recently on that continent. At some point in prehistory, our ancestors migrated from Africa to Eurasia and replaced other subspecies of the genus Homo, such as Neanderthals. This is the dominant theory among scientists, and current evidence seems to support it best — though, say that in some circles and be prepared for a late-night debate that goes well past last call.

The multi-regional theory suggests that humans evolved in parallel across various regions. According to this model, the hominins Homo erectus left Africa to settle across Eurasia and (maybe) Australia. These disparate populations eventually evolved into modern humans thanks to a helping dollop of gene flow.

Of course, there are the broad strokes of very nuanced models, and we're leaving a lot of discussion out. There is, for example, a debate as to whether African Homo erectus fossils should be considered alongside Asian ones or should be labeled as a different subspecies, Homo ergaster.

Proponents of the out-of-Africa model aren't sure whether non-African humans descended from a single migration out of Africa or at least two major waves of migration followed by a lot of interbreeding.

Did we head east or south of Eden?

Not all anthropologists agree with Begun and his team's conclusions. As noted by New Scientist, it is possible that the Nikiti ape is not related to hominins at all. It may have evolved similar features independently, developing teeth to eat similar foods or chew in a similar manner as early hominins.

Ultimately, Nikiti ape alone doesn't offer enough evidence to upend the out of Africa model, which is supported by a more robust fossil record and DNA evidence. But additional evidence may be uncovered to lend further credence to Begun's hypothesis or lead us to yet unconsidered ideas about humanity's evolution.