From 1.8 million years ago, earliest evidence of human activity found

Scientists discover what our human ancestors were making inside the Wonderwerk Cave in South Africa 1.8 million years ago.

From 1.8 million years ago, earliest evidence of human activity found

Inside the Kalahari Desert Wonderwerk Cave

Credit: Michael Chazan / Hebrew University of Jerusalem
  • Researchers find evidence of early tool-making and fire use inside the Wonderwerk Cave in Africa.
  • The scientists date the human activity in the cave to 1.8 million years ago.
  • The evidence is the earliest found yet and advances our understanding of human evolution.

One of the oldest activities carried out by humans has been identified in a cave in South Africa. A team of geologists and archaeologists found evidence that our ancestors were making fire and tools in the Wonderwerk Cave in the country's Kalahari Desert some 1.8 million years ago.

A new study published in the journal Quaternary Science Reviews from researchers at the Hebrew University of Jerusalem and the University of Toronto proposes that Wonderwerk — which means "miracle" in Afrikaans — contains the oldest evidence of human activity discovered.

"We can now say with confidence that our human ancestors were making simple Oldowan stone tools inside the Wonderwerk Cave 1.8 million years ago," shared the study's lead author Professor Ron Shaar from Hebrew University.

Oldowan stone tools are the earliest type of tools that date as far back as 2.6 million years ago. An Oldowan tool, which was useful for chopping, was made by chipping flakes off of one stone by hitting it with another stone.


An Oldowan stone toolCredit: Wikimedia / Public domain


Professor Shaar explained that Wonderwerk is different from other ancient sites where tool shards have been found because it is a cave and not in the open air, where sample origins are harder to pinpoint and contamination is possible.

Studying the cave, the researchers were able to pinpoint the time over one million years ago when a shift from Oldowan tools to the earliest handaxes could be observed. Investigating deeper in the cave, the scientists also established that a purposeful use of fire could be dated to one million years back.

This is significant because examples of early fire use usually come from sites in the open air, where there is the possibility that they resulted from wildfires. The remnants of ancient fires in a cave — including burned bones, ash, and tools — contain clear clues as to their purpose.

To precisely date their discovery, the researchers relied on paleomagnetism and burial dating to measure magnetic signals from the remains hidden within a sedimentary rock layer that was 2.5 meters thick. Prehistoric clay particles that settled on the cave floor exhibit magnetization and can show the direction of the ancient earth's magnetic field. Knowing the dates of magnetic field reversals allowed the scientists to narrow down the date range of the cave layers.


The Kalahari desert Wonderwerk CaveCredit: Michael Chazan / Hebrew University of Jerusalem


Professor Ari Matmon of Hebrew University used another dating method to solidify their conclusions, focusing on isotopes within quartz particles in the sand that "have a built-in geological clock that starts ticking when they enter a cave." He elaborated that in their lab, the scientists were "able to measure the concentrations of specific isotopes in those particles and deduce how much time had passed since those grains of sand entered the cave."

Finding the exact dates of human activity in the Wonderwerk Cave could lead to a better understanding of human evolution in Africa as well as the way of life of our early ancestors.

U.S. Navy controls inventions that claim to change "fabric of reality"

Inventions with revolutionary potential made by a mysterious aerospace engineer for the U.S. Navy come to light.

U.S. Navy ships

Credit: Getty Images
Surprising Science
  • U.S. Navy holds patents for enigmatic inventions by aerospace engineer Dr. Salvatore Pais.
  • Pais came up with technology that can "engineer" reality, devising an ultrafast craft, a fusion reactor, and more.
  • While mostly theoretical at this point, the inventions could transform energy, space, and military sectors.
Keep reading Show less

Why so gassy? Mysterious methane detected on Saturn’s moon

Scientists do not know what is causing the overabundance of the gas.

An impression of NASA's Cassini spacecraft flying through a water plume on the surface of Saturn's moon Enceladus.

Credit: NASA
Surprising Science
  • A new study looked to understand the source of methane on Saturn's moon Enceladus.
  • The scientists used computer models with data from the Cassini spacecraft.
  • The explanation could lie in alien organisms or non-biological processes.
Keep reading Show less

CRISPR therapy cures first genetic disorder inside the body

It marks a breakthrough in using gene editing to treat diseases.

Credit: National Cancer Institute via Unsplash
Technology & Innovation

This article was originally published by our sister site, Freethink.

For the first time, researchers appear to have effectively treated a genetic disorder by directly injecting a CRISPR therapy into patients' bloodstreams — overcoming one of the biggest hurdles to curing diseases with the gene editing technology.

The therapy appears to be astonishingly effective, editing nearly every cell in the liver to stop a disease-causing mutation.

The challenge: CRISPR gives us the ability to correct genetic mutations, and given that such mutations are responsible for more than 6,000 human diseases, the tech has the potential to dramatically improve human health.

One way to use CRISPR to treat diseases is to remove affected cells from a patient, edit out the mutation in the lab, and place the cells back in the body to replicate — that's how one team functionally cured people with the blood disorder sickle cell anemia, editing and then infusing bone marrow cells.

Bone marrow is a special case, though, and many mutations cause disease in organs that are harder to fix.

Another option is to insert the CRISPR system itself into the body so that it can make edits directly in the affected organs (that's only been attempted once, in an ongoing study in which people had a CRISPR therapy injected into their eyes to treat a rare vision disorder).

Injecting a CRISPR therapy right into the bloodstream has been a problem, though, because the therapy has to find the right cells to edit. An inherited mutation will be in the DNA of every cell of your body, but if it only causes disease in the liver, you don't want your therapy being used up in the pancreas or kidneys.

A new CRISPR therapy: Now, researchers from Intellia Therapeutics and Regeneron Pharmaceuticals have demonstrated for the first time that a CRISPR therapy delivered into the bloodstream can travel to desired tissues to make edits.

We can overcome one of the biggest challenges with applying CRISPR clinically.

—JENNIFER DOUDNA

"This is a major milestone for patients," Jennifer Doudna, co-developer of CRISPR, who wasn't involved in the trial, told NPR.

"While these are early data, they show us that we can overcome one of the biggest challenges with applying CRISPR clinically so far, which is being able to deliver it systemically and get it to the right place," she continued.

What they did: During a phase 1 clinical trial, Intellia researchers injected a CRISPR therapy dubbed NTLA-2001 into the bloodstreams of six people with a rare, potentially fatal genetic disorder called transthyretin amyloidosis.

The livers of people with transthyretin amyloidosis produce a destructive protein, and the CRISPR therapy was designed to target the gene that makes the protein and halt its production. After just one injection of NTLA-2001, the three patients given a higher dose saw their levels of the protein drop by 80% to 96%.

A better option: The CRISPR therapy produced only mild adverse effects and did lower the protein levels, but we don't know yet if the effect will be permanent. It'll also be a few months before we know if the therapy can alleviate the symptoms of transthyretin amyloidosis.

This is a wonderful day for the future of gene-editing as a medicine.

—FYODOR URNOV

If everything goes as hoped, though, NTLA-2001 could one day offer a better treatment option for transthyretin amyloidosis than a currently approved medication, patisiran, which only reduces toxic protein levels by 81% and must be injected regularly.

Looking ahead: Even more exciting than NTLA-2001's potential impact on transthyretin amyloidosis, though, is the knowledge that we may be able to use CRISPR injections to treat other genetic disorders that are difficult to target directly, such as heart or brain diseases.

"This is a wonderful day for the future of gene-editing as a medicine," Fyodor Urnov, a UC Berkeley professor of genetics, who wasn't involved in the trial, told NPR. "We as a species are watching this remarkable new show called: our gene-edited future."

Quantcast