Scientists teach birds new songs by implanting them with false memories

Groundbreaking neurological research on songbirds provides insight on human learned behavior and speech.

Scientists teach birds new songs by implanting them with false memories
Photo credit: AlexandraPhotos / Moment via Getty Images
  • Scientists recently implanted a false memory into the brains of young zebra finches, teaching them a melody they had never heard before.
  • By stimulating certain neural circuits in the male birds' brains, researchers taught them courtship songs bypassing the lessons of an adult tutor.
  • Scientists hope this research expands our knowledge of neurodevelopmental disorders such as autism.

"Monkey see, monkey do" has been the way we have historically understood the learning process for humans and animals. However, scientists at UT Southwestern recently implanted a false memory into the brains of young zebra finches, teaching them a melody they had never heard before.

The researchers identified the two regions of the brain responsible for encoding the memories through which the finch learn song-element durations. They were then able to manipulate the interactions between those regions of the brain using optogenetics, a method of manipulating living tissue with light to control neural function. This guided the birds in the development of courtship songs they had never heard.

When one learns from observation, the memory of another individual doing something correctly guides you in learning to perform the behavior. How those "behavior-goal" memories are formed has been a mystery. Dina Lipkind, a biologist at York College, told The Scientist that the authors in this study were able to crack the first part of the process by discovering how a memory is initially formed that guides an individual to performing that behavior later on.

The anatomy of bird 'inception'

To test whether manipulating certain neural circuits could implant behavioral-goal memories, the researchers raised young male birds without any social or auditory experience gained through adult song tutors.

Typically, young male zebra finches learn to sing a mating song from their father or another adult tutor. The finches use their song to court female birds in a behavior that is called "directed singing." Naturally, the birds spend a great deal of time practicing their song in private so they are ready to swoop in and serenade a female when the opportunity arises.

Researchers optically tutored the finches using light pulses that stimulated certain neural circuits, which were designed to mimic short song elements. This "opto-tutoring" in the young birds shaped the temporal structure of their mating song in adulthood by imprinting "memories" of the song into the birds' brain, bypassing the tutor's lessons. The finches sang the courtship songs that corresponded to the duration of time light had kept the neurons active. Birds that received shorter pulses sang songs with a shorter duration, and those that received extended pulses held their melodies longer.

Interestingly, the researchers found that opto-tutored male birds grasped the social norms of singing. Like regularly tutored birds, they practiced their mating song when alone and, when presented with a female finch to woo, they performed using the shorter and extended notes they learned through the false memory implantation.

While the researchers were able to imprint the duration of syllables in the birds' memories, that isn't everything that they need to learn in the song. There are other important characteristics that a zebra finch needs to nail, including pitch and correctly ordering the syllables. Next the researchers want to identify the circuits that carry that other information, and investigate the ways to encode those memories.

Human Implications

Photo Source: Wikimedia Commons

The groundbreaking study could potentially serve as a blueprint for discovering how genetic and social environments influence neural circuits over time.

"This is the first time we have confirmed brain regions that encode behavioral-goal memories — those memories that guide us when we want to imitate anything from speech to learning the piano," said Dr. Todd Roberts, a neuroscientist with UT Southwestern's O'Donnell Brain Institute in a press release. "The findings enabled us to implant these memories into the birds and guide the learning of their song."

Because the zebra finches vocal development process is similar to humans, this knowledge might help us better understand the mechanisms of human speech and language learning. The hope is that someday it will be used to target certain speech genes that are disrupted in people with neurological conditions that affect vocalization, such as autism. Not only that, but it could be used to help kids understand other social patterns and cues.

Of course, the neural pathways of the human mind are a great deal more complex than the circuitry of a songbird's brain. While this research points us in the right direction on where to look for more information on neurodevelopmental disorders, it will be a while before science can imprint the human mind with false memories via light pulse.

How New York's largest hospital system is predicting COVID-19 spikes

Northwell Health is using insights from website traffic to forecast COVID-19 hospitalizations two weeks in the future.

Credit: Getty Images
Sponsored by Northwell Health
  • The machine-learning algorithm works by analyzing the online behavior of visitors to the Northwell Health website and comparing that data to future COVID-19 hospitalizations.
  • The tool, which uses anonymized data, has so far predicted hospitalizations with an accuracy rate of 80 percent.
  • Machine-learning tools are helping health-care professionals worldwide better constrain and treat COVID-19.
Keep reading Show less

Listen: Scientists re-create voice of 3,000-year-old Egyptian mummy

Scientists used CT scanning and 3D-printing technology to re-create the voice of Nesyamun, an ancient Egyptian priest.

Surprising Science
  • Scientists printed a 3D replica of the vocal tract of Nesyamun, an Egyptian priest whose mummified corpse has been on display in the UK for two centuries.
  • With the help of an electronic device, the reproduced voice is able to "speak" a vowel noise.
  • The team behind the "Voices of the Past" project suggest reproducing ancient voices could make museum experiences more dynamic.
Keep reading Show less

Dark matter axions possibly found near Magnificent 7 neutron stars

A new study proposes mysterious axions may be found in X-rays coming from a cluster of neutron stars.

A rendering of the XMM-Newton (X-ray multi-mirror mission) space telescope.

Credit: D. Ducros; ESA/XMM-Newton, CC BY-SA 3.0 IGO
Surprising Science
  • A study led by Berkeley Lab suggests axions may be present near neutron stars known as the Magnificent Seven.
  • The axions, theorized fundamental particles, could be found in the high-energy X-rays emitted from the stars.
  • Axions have yet to be observed directly and may be responsible for the elusive dark matter.
  • Keep reading Show less

    Put on a happy face? “Deep acting” associated with improved work life

    New research suggests you can't fake your emotional state to improve your work life — you have to feel it.

    Credit: Columbia Pictures
    Personal Growth
  • Deep acting is the work strategy of regulating your emotions to match a desired state.
  • New research suggests that deep acting reduces fatigue, improves trust, and advances goal progress over other regulation strategies.
  • Further research suggests learning to attune our emotions for deep acting is a beneficial work-life strategy.
  • Keep reading Show less
    Surprising Science

    World's oldest work of art found in a hidden Indonesian valley

    Archaeologists discover a cave painting of a wild pig that is now the world's oldest dated work of representational art.

    Scroll down to load more…
    Quantcast