5 reasons future space travel should explore asteroids

While the world considers future trips to Mars, two astrophysicists make a case for exploring asteroids.

NASA/JPL-Caltech

On the same day that the Earth survived an expected near-miss with asteroid 367943 Duende, Russian dashcams unexpectedly captured footage of a different asteroid as it slammed into the atmosphere, exploded, and injured more than 1,000 people.


That day in Chelyabinsk in February 2013 reminded the world that the Earth does not exist in a bubble.

Asteroids provide a direct connection between the Earth and interplanetary space. Craters such as the Barringer Crater in Arizona are a stark reminder. The dinosaurs died out due to a different impact not far away in the Gulf of Mexico. But elsewhere in the universe, asteroids may actually transport life between different planets.

While the world reflects on the first flight to the moon and our future on Mars, we think asteroids – the so-called “minor planets" – deserve recognition. Here's why:

1. They could kill us

We did not see the Chelyabinsk meteor coming until the Russian dashcams caught it. Fortunately, nobody died as a direct result of the explosion. Next time we may not be so lucky. Even for known asteroids, there's at least a very slim possibility that they may collide with Earth over the next few hundred years. There are currently six known asteroids with at least a 0.1% chance of impacting the Earth before the 23rd century.

And the same asteroid which would cause a few casualties by exploding over a forest could kill thousands by instead exploding over a large city.

2. They could contain water

Astronomers debate the origin of Earth's water, and whether it was delivered to our planet billions of years ago by comets and asteroids. NASA's Dawn space probe visited the largest known asteroid, Ceres, and detected water on its surface. In fact, NASA classifies Ceres as a former “ocean world", albeit one where the ocean of water and ammonia has since frozen and reacted with the silicate rocks to form mineral deposits which now pepper the landscape.

3. They reveal how the solar system formed

The surfaces of asteroids don't erode like rocks on Earth because asteroids lack atmospheres. That means craters on asteroids are better preserved over long timescales, and give evidence of impacts from the last four billion years which would have long since washed away on Earth. In this way, asteroids can act as time capsules for evidence of the ancient universe.

The further back you go in time the trickier it becomes, as asteroids change in the hundreds of millions of years after their formation, shifting their positions and suffering collisions.

4. They reveal how the solar system will die

More than six billion years from now, when the sun uses all of its hydrogen fuel, it will start to change, eventually becoming a white dwarf – the end state for most stars in the Milky Way galaxy. During this transformation, the sun will briefly enlarge enough to swallow Mercury, Venus and maybe Earth. But at least five of the sun's planets and many asteroids will survive this transformation.

The asteroids then play an important role, as they are "kicked" towards the white dwarf by the gravitational field of the surviving planets when the asteroids approach them too closely. We regularly observe the broken up remains of asteroids inside the atmospheres of other white dwarf stars, allowing us to determine the asteroids' chemical composition by performing an autopsy from afar.

This technique is the most direct way we can probe the chemical composition of planetary systems outside of our own. Asteroids in our own solar system might then provide the best means for future galactic civilisations to find out more about the planetary bodies orbiting our future sun, long after Earth is gone.

5. They could transport life

We know the destructive nature of an asteroid impact, but what if it could instead act as a means of escape? A large enough impact by an asteroid would impart enough energy to eject material from the planet's surface. If the planet is habitable, some of the ejected material could become a transportation vessel for hardy microorganisms, which could stand a chance of surviving the launch into space.

Of course, the launch is just the start of the overall adventure. To complete the hop from one planet to another, life must withstand the harsh conditions of space during its interplanetary voyage. Upon reaching its destination, it must survive entry to the new planet, including another surface impact. The wide range of planetary systems discovered by astronomers in recent years could help. Some of these are tightly packed with potentially habitable planets close together.

The TRAPPIST-1 system is just one example. This is a clutch of seven planets orbiting a star 12 times smaller than our own sun, a mere 39 light years away. All of the seven planets are roughly the same size as Earth and clustered fairly close together – meaning bacteria could feasibly hop between them if disturbed by an asteroid on a nearby planet. With favourable conditions in place on the destination planet, life could have a much better chance of surviving the journey than if a living organism was ejected from Earth and arrived on a different planet in our solar system.

The many hurdles involved in this interplanetary hop make an arduous battle for microorganisms looking for a new home. Nevertheless, the theory will continue to generate intrigue as astronomers uncover yet more weird and wonderful worlds shaped by the influence of asteroids. With each new world comes a greater understanding of the key role they play in shaping our universe.The Conversation

Dimitri Veras, STFC Ernest Rutherford Fellow of Astrophysics, University of Warwick and James Blake, PhD Researcher in Astrophysics, University of Warwick.

This article is republished from The Conversation under a Creative Commons license. Read the original article.

A still from the film "We Became Fragments" by Luisa Conlon , Lacy Roberts and Hanna Miller, part of the Global Oneness Project library.

Photo: Luisa Conlon , Lacy Roberts and Hanna Miller / Global Oneness Project
Sponsored by Charles Koch Foundation
  • Stories are at the heart of learning, writes Cleary Vaughan-Lee, Executive Director for the Global Oneness Project. They have always challenged us to think beyond ourselves, expanding our experience and revealing deep truths.
  • Vaughan-Lee explains 6 ways that storytelling can foster empathy and deliver powerful learning experiences.
  • Global Oneness Project is a free library of stories—containing short documentaries, photo essays, and essays—that each contain a companion lesson plan and learning activities for students so they can expand their experience of the world.
Keep reading Show less

Artist rendering of a supervolcano.

Getty Images
Surprising Science
  • The supervolcano in Yellowstone National Park could cause an "ultra-catastrophe," warns an extinction events writer.
  • The full eruption of the volcano last happened 640,000 years ago.
  • The blast could kill billions and make United States uninhabitable.
Keep reading Show less

Ashamed over my mental illness, I realized drawing might help me – and others – cope

Just before I turned 60, I discovered that sharing my story by drawing could be an effective way to both alleviate my symptoms and combat that stigma.

Photo by JJ Ying on Unsplash
Mind & Brain

I've lived much of my life with anxiety and depression, including the negative feelings – shame and self-doubt – that seduced me into believing the stigma around mental illness: that people knew I wasn't good enough; that they would avoid me because I was different or unstable; and that I had to find a way to make them like me.

Keep reading Show less

Sexual activity linked to higher cognitive function in older age

A joint study by two England universities explores the link between sex and cognitive function with some surprising differences in male and female outcomes in old age.

The results of this one-of-a-kind study suggest there are significant associations between sexual activity and number sequencing/word recall in men.
Image by Lightspring on Shutterstock
Mind & Brain
  • A joint study by the universities of Coventry and Oxford in England has linked sexual activity with higher cognitive abilities in older age.
  • The results of this study suggest there are significant associations between sexual activity and number sequencing/word recall in men. In women, however, there was a significant association between sexual activity in word recall alone - number sequencing was not impacted.
  • The differences in testosterone (the male sex hormone) and oxytocin (a predominantly female hormone) may factor into why the male cognitive level changes much more during sexual activity in older age.
Keep reading Show less
Scroll down to load more…