'One among millions': DNA is not the only genetic molecule

A recent computer analysis found that millions of possible chemical compounds could be used to store genetic information. This begs the question — why DNA?

Illustration of scientists holding DNA
Shutterstock
  • The central dogma of biology states that genetic information flows from DNA to RNA to proteins, but new research suggests that this may not be the only way for life to work.
  • A sophisticated computer analysis revealed that millions of other molecules could be used to function in place of the two nucleic acids, DNA and RNA.
  • The results have important implications for developing new drugs, the origins of life on Earth, and its possible presence in the rest of the universe.


Simply put, the so-called central dogma of biology asserts that genetic information flows from DNA to RNA to proteins, and once that information is passed to a protein, it cannot be returned as DNA or RNA again. It's dubbed the central dogma because it seems to be universal amongst all living organisms. There are some exceptions to the linear flow described in the popular version of the central dogma — information can be passed back and forth between RNA and DNA or between DNA and DNA or RNA and RNA, but the central players remain the same: DNA, RNA, and proteins.

But what if this didn't have to be the case? Could genetic information be stored in media other than the two nucleic acids of DNA and RNA? New research published in the Journal of Chemical Information and Modeling suggests that there might not be just a handful of alternative molecules for storing genetic information, but millions.

Millions of useful targets

Central dogma of biology

The central dogma of biology asserts that the genetic information is transcribed from DNA to RNA, which then translates that information into useful products like proteins. This new research, however, suggests that DNA and RNA are just two options out of millions of others.

Shutterstock

Analogues to nucleic acids exist, many of which serve as the foundation for important drugs for treating viruses like HIV and hepatitis as well as for treating cancers, but until recently, no one was sure of how many unknown nucleic acid analogues could be out there.

"There are two kinds of nucleic acids in biology," said co-author Jim Cleaves, "and maybe 20 or 30 effective nucleic acid-binding nucleic acid analogues. We wanted to know if there is one more to be found or even a million more. The answer is, there seem to be many more than was expected."

Cleaves and colleagues decided to conduct a chemical space analysis — in essence, a sophisticated computer technique that generates all possible molecules that adhere to a set of defined criteria. In this case, the criteria were to find compounds that could serve as nucleic acid analogues and as a means of storing genetic information.

"We were surprised by the outcome of this computation," said co-author Markus Meringer. "It would be very difficult to estimate a priori that there are more than a million nucleic acid–like scaffolds. Now we know, and we can start looking into testing some of these in the lab."

Though no specific analogues were targeted in this paper, it does present a long list of candidates to be explored for use as drugs for serious diseases like HIV or cancer. A more intriguing possibility suggested by the research is that life itself may have taken its very first steps using one of these alternative compounds.

Many scientists believe that before DNA became the dominant means of storing genetic information, life used RNA to code genetic data and pass it down to offspring. In part, this is because RNA can directly produce proteins, which DNA can't do on its own, and because it's a simpler structure than DNA. Over time, life likely started to opt for using DNA for storage due to its greater stability and to rely on RNA as a kind of middleman for producing proteins. But RNA on its own is still a very complicated compound and is fairly unstable; in all likelihood, something simpler came before RNA, possibly using some of the nucleic acid analogues identified in this study.

A galaxy of nucleic acid analogues

Not only does this shed light on how life may have started on Earth, but it also has implications for alien life as well. Co-author Jay Goodwin said, "It is truly exciting to consider the potential for alternate genetic systems based on these analogous nucleosides — that these might possibly have emerged and evolved in different environments, perhaps even on other planets or moons within our solar system. These alternate genetic systems might expand our conception of biology's 'central dogma' into new evolutionary directions, in response and robust to increasingly challenging environments here on Earth."

When we search for extraterrestrial life, often we're looking for signs of RNA and DNA, but this may be an excessively narrow scope. After all, if millions of alternatives exist, there would need to be something very special indeed for life to universally favor using just DNA and RNA.

Malcolm Gladwell live | How to re-examine everything you know

Join Radiolab's Latif Nasser at 1pm ET on Monday as he chats with Malcolm Gladwell live on Big Think.

Big Think LIVE

Add event to your calendar

AppleGoogleOffice 365OutlookOutlook.comYahoo


Keep reading Show less

Humans evolved for punching, study confirms

University of Utah research finds that men are especially well suited for fisticuffs.

Image source: durantelallera/Shutterstock
Surprising Science
  • With males having more upper-body mass than women, a study looks to find the reason.
  • The study is based on the assumption that men have been fighters for so long that evolution has selected those best-equipped for the task.
  • If men fought other men, winners would have survived and reproduced, losers not so much.
Keep reading Show less

Study: Private prisons result in more inmates, longer sentences

The Labour Economics study suggests two potential reasons for the increase: corruption and increased capacity.

Politics & Current Affairs
  • After adopting strict sentencing laws in the '80s and '90s, many states have turned to for-profit prisons to handle growing prison populations.
  • A new study in Labour Economics found that privately-run prisons correlate with a rise in incarceration rates and sentence lengths.
  • While evidence is mixed, private prisons do not appear to improve recidivism or cost less than state-run facilities.
  • Keep reading Show less

    The art of asking the right questions

    What exactly does "questions are the new answers" mean?

    Videos
    • Traditionally, intelligence has been viewed as having all the answers. When it comes to being innovative and forward-thinking, it turns out that being able to ask the right questions is an equally valuable skill.
    • The difference between the right and wrong questions is not simply in the level of difficulty. In this video, geobiologist Hope Jahren, journalist Warren Berger, experimental philosopher Jonathon Keats, and investor Tim Ferriss discuss the power of creativity and the merit in asking naive and even "dumb" questions.
    • "Very often the dumb question that is sitting right there that no one seems to be asking is the smartest question you can ask," Ferriss says, adding that "not only is it the smartest, most incisive, but if you want to ask it and you're reasonably smart, I guarantee you there are other people who want to ask it but are just embarrassed to do so."
    Mind & Brain

    Study links 'sun-seeking behavior' to genes involved in addiction

    A large-scale study from King's College London explores the link between genetics and sun-seeking behaviors.

    Scroll down to load more…
    Quantcast