'One among millions': DNA is not the only genetic molecule

A recent computer analysis found that millions of possible chemical compounds could be used to store genetic information. This begs the question — why DNA?

Illustration of scientists holding DNA
Shutterstock
  • The central dogma of biology states that genetic information flows from DNA to RNA to proteins, but new research suggests that this may not be the only way for life to work.
  • A sophisticated computer analysis revealed that millions of other molecules could be used to function in place of the two nucleic acids, DNA and RNA.
  • The results have important implications for developing new drugs, the origins of life on Earth, and its possible presence in the rest of the universe.


Simply put, the so-called central dogma of biology asserts that genetic information flows from DNA to RNA to proteins, and once that information is passed to a protein, it cannot be returned as DNA or RNA again. It's dubbed the central dogma because it seems to be universal amongst all living organisms. There are some exceptions to the linear flow described in the popular version of the central dogma — information can be passed back and forth between RNA and DNA or between DNA and DNA or RNA and RNA, but the central players remain the same: DNA, RNA, and proteins.

But what if this didn't have to be the case? Could genetic information be stored in media other than the two nucleic acids of DNA and RNA? New research published in the Journal of Chemical Information and Modeling suggests that there might not be just a handful of alternative molecules for storing genetic information, but millions.

Millions of useful targets

Central dogma of biology

The central dogma of biology asserts that the genetic information is transcribed from DNA to RNA, which then translates that information into useful products like proteins. This new research, however, suggests that DNA and RNA are just two options out of millions of others.

Shutterstock

Analogues to nucleic acids exist, many of which serve as the foundation for important drugs for treating viruses like HIV and hepatitis as well as for treating cancers, but until recently, no one was sure of how many unknown nucleic acid analogues could be out there.

"There are two kinds of nucleic acids in biology," said co-author Jim Cleaves, "and maybe 20 or 30 effective nucleic acid-binding nucleic acid analogues. We wanted to know if there is one more to be found or even a million more. The answer is, there seem to be many more than was expected."

Cleaves and colleagues decided to conduct a chemical space analysis — in essence, a sophisticated computer technique that generates all possible molecules that adhere to a set of defined criteria. In this case, the criteria were to find compounds that could serve as nucleic acid analogues and as a means of storing genetic information.

"We were surprised by the outcome of this computation," said co-author Markus Meringer. "It would be very difficult to estimate a priori that there are more than a million nucleic acid–like scaffolds. Now we know, and we can start looking into testing some of these in the lab."

Though no specific analogues were targeted in this paper, it does present a long list of candidates to be explored for use as drugs for serious diseases like HIV or cancer. A more intriguing possibility suggested by the research is that life itself may have taken its very first steps using one of these alternative compounds.

Many scientists believe that before DNA became the dominant means of storing genetic information, life used RNA to code genetic data and pass it down to offspring. In part, this is because RNA can directly produce proteins, which DNA can't do on its own, and because it's a simpler structure than DNA. Over time, life likely started to opt for using DNA for storage due to its greater stability and to rely on RNA as a kind of middleman for producing proteins. But RNA on its own is still a very complicated compound and is fairly unstable; in all likelihood, something simpler came before RNA, possibly using some of the nucleic acid analogues identified in this study.

A galaxy of nucleic acid analogues

Not only does this shed light on how life may have started on Earth, but it also has implications for alien life as well. Co-author Jay Goodwin said, "It is truly exciting to consider the potential for alternate genetic systems based on these analogous nucleosides — that these might possibly have emerged and evolved in different environments, perhaps even on other planets or moons within our solar system. These alternate genetic systems might expand our conception of biology's 'central dogma' into new evolutionary directions, in response and robust to increasingly challenging environments here on Earth."

When we search for extraterrestrial life, often we're looking for signs of RNA and DNA, but this may be an excessively narrow scope. After all, if millions of alternatives exist, there would need to be something very special indeed for life to universally favor using just DNA and RNA.

Humanity's most distant space probe captures a strange sound

A new paper reveals that the Voyager 1 spacecraft detected a constant hum coming from outside our Solar System.

Voyager 1 in interstellar space.

Credit: NASA / JPL - Caltech.
Surprising Science
  • Voyager 1, humankind's most distant space probe, detected an unusual "hum" in the data from interstellar space.
  • The noise is likely produced by interstellar gas.
  • Further investigation may reveal the hum's exact origins.
Keep reading Show less

We're winning the war on cancer

As the American population grows, fewer people will die of cancer.

Credit: JEFF PACHOUD via Getty Images
Surprising Science
  • A new study projects that cancer deaths will decrease in relative and absolute terms by 2040.
  • The biggest decrease will be among lung cancer deaths, which are predicted to fall by 50 percent.
  • Cancer is like terrorism: we cannot eliminate it entirely, but we can minimize its influence.
Keep reading Show less

China's "artificial sun" sets new record for fusion power

China has reached a new record for nuclear fusion at 120 million degrees Celsius.

Credit: STR via Getty Images
Technology & Innovation

This article was originally published on our sister site, Freethink.

China wants to build a mini-star on Earth and house it in a reactor. Many teams across the globe have this same bold goal --- which would create unlimited clean energy via nuclear fusion.

But according to Chinese state media, New Atlas reports, the team at the Experimental Advanced Superconducting Tokamak (EAST) has set a new world record: temperatures of 120 million degrees Celsius for 101 seconds.

Yeah, that's hot. So what? Nuclear fusion reactions require an insane amount of heat and pressure --- a temperature environment similar to the sun, which is approximately 150 million degrees C.

If scientists can essentially build a sun on Earth, they can create endless energy by mimicking how the sun does it.

If scientists can essentially build a sun on Earth, they can create endless energy by mimicking how the sun does it. In nuclear fusion, the extreme heat and pressure create a plasma. Then, within that plasma, two or more hydrogen nuclei crash together, merge into a heavier atom, and release a ton of energy in the process.

Nuclear fusion milestones: The team at EAST built a giant metal torus (similar in shape to a giant donut) with a series of magnetic coils. The coils hold hot plasma where the reactions occur. They've reached many milestones along the way.

According to New Atlas, in 2016, the scientists at EAST could heat hydrogen plasma to roughly 50 million degrees C for 102 seconds. Two years later, they reached 100 million degrees for 10 seconds.

The temperatures are impressive, but the short reaction times, and lack of pressure are another obstacle. Fusion is simple for the sun, because stars are massive and gravity provides even pressure all over the surface. The pressure squeezes hydrogen gas in the sun's core so immensely that several nuclei combine to form one atom, releasing energy.

But on Earth, we have to supply all of the pressure to keep the reaction going, and it has to be perfectly even. It's hard to do this for any length of time, and it uses a ton of energy. So the reactions usually fizzle out in minutes or seconds.

Still, the latest record of 120 million degrees and 101 seconds is one more step toward sustaining longer and hotter reactions.

Why does this matter? No one denies that humankind needs a clean, unlimited source of energy.

We all recognize that oil and gas are limited resources. But even wind and solar power --- renewable energies --- are fundamentally limited. They are dependent upon a breezy day or a cloudless sky, which we can't always count on.

Nuclear fusion is clean, safe, and environmentally sustainable --- its fuel is a nearly limitless resource since it is simply hydrogen (which can be easily made from water).

With each new milestone, we are creeping closer and closer to a breakthrough for unlimited, clean energy.

Videos

The science of sex, love, attraction, and obsession

The symbol for love is the heart, but the brain may be more accurate.

Quantcast