We can assess the health of coral reefs by the sounds algae make

Tiny bubbles talk photosynthesis.

  • During photosynthesis, algae produces a symphony of little "pings."
  • The sounds are produced by oxygen bubbles breaking away from the plants.
  • Monitoring reef health through its sound is a new avenue for acoustic ecology.

When oceanographers Lauren and Simon Freeman, a couple who work with the U.S. Naval Undersea Warfare Center in Rhode Island, first mentioned what they'd heard to others, the response was not exactly positive. They'd been listening to sounds they were certain had been made by marine macroalgae covering underwater coral reefs in Hawaii. Simon recalls, "We were told the sound was from snapping shrimp, end of story." But, listening at a few locations, they saw a correlation between the amount of sound and the quantity of algae. Further research has pretty much confirmed their hunch, and they've introduced a new avenue for marine acoustic ecology: Assessing the health of reefs according to the sounds they make.

Back up. Sounds the algae make?

An oxygen bubble about to ping and float upward. (Freeman, et al)

Algae, like plants on dry land, convert sunlight and carbon dioxide to energy via photosynthesis. The process releases tiny bubbles of oxygen to the surface. As each bubble lets go of the plant that produced it, there's a little "ping." As the Freemans' research states, "Many such bubbles create a large, distributed sound source over the sea floor." This 2 kHz – 20kHz hiss made of pings is what the Freemans have been hearing and recording from reefs.

There's actually quite a lot of acoustic goings-on underwater, between animal noises, human noises, waves, other bubbles and so on. Acoustic ecologist Erica Staaterman, not involved in the Freemans' research, says, "When I put a recorder in the water, I'm usually surprised by some cool new fish sound that I've never heard before. There's so much to discover."

As a result, recording and listening to algae in the wild is challenging.

To verify that the telltale pings were indeed coming from algae and not some other source, the Freemans set up a tank containing the invasive Hawaiian algae Gracilaria salicornia — no fish or crustaceans welcome. Upon listening, they heard the same high-pitched noise they'd witnessed at degraded reefs that no longer supported fish or other animals.

The value of this discovery

(Rich Carey/Shutterstock)

"Right now," says Simon, "reefs are evaluated visually by divers." Thorough research is an expensive and time-intensive endeavor, and findings are limited to what divers can see. The Freemans are hopeful that acoustic analysis of these environments will eventually reveal much more about reefs' conditions.

"In the future, it might be possible to quickly listen to a coral reef soundscape, perhaps by using an autonomous vehicle, and evaluate how it may have changed from the previous year."

Even now, a snapshot of a reef's algae cover can be quickly gleaned from its sound. (Other researchers are acoustically monitoring beds of sea grass in Australia.)

As Staaterman sees it, "Making these kind of links between bioacoustics and biodiversity is an exciting field with a lot of promise."

Big Think Edge
  • The meaning of the word 'confidence' seems obvious. But it's not the same as self-esteem.
  • Confidence isn't just a feeling on your inside. It comes from taking action in the world.
  • Join Big Think Edge today and learn how to achieve more confidence when and where it really matters.

To boost your self-esteem, write about chapters of your life

If you're lacking confidence and feel like you could benefit from an ego boost, try writing your life story.

Personal Growth

In truth, so much of what happens to us in life is random – we are pawns at the mercy of Lady Luck. To take ownership of our experiences and exert a feeling of control over our future, we tell stories about ourselves that weave meaning and continuity into our personal identity.

Keep reading Show less

Yale scientists restore brain function to 32 clinically dead pigs

Researchers hope the technology will further our understanding of the brain, but lawmakers may not be ready for the ethical challenges.

Still from John Stephenson's 1999 rendition of Animal Farm.
Surprising Science
  • Researchers at the Yale School of Medicine successfully restored some functions to pig brains that had been dead for hours.
  • They hope the technology will advance our understanding of the brain, potentially developing new treatments for debilitating diseases and disorders.
  • The research raises many ethical questions and puts to the test our current understanding of death.

The image of an undead brain coming back to live again is the stuff of science fiction. Not just any science fiction, specifically B-grade sci fi. What instantly springs to mind is the black-and-white horrors of films like Fiend Without a Face. Bad acting. Plastic monstrosities. Visible strings. And a spinal cord that, for some reason, is also a tentacle?

But like any good science fiction, it's only a matter of time before some manner of it seeps into our reality. This week's Nature published the findings of researchers who managed to restore function to pigs' brains that were clinically dead. At least, what we once thought of as dead.

What's dead may never die, it seems

The researchers did not hail from House Greyjoy — "What is dead may never die" — but came largely from the Yale School of Medicine. They connected 32 pig brains to a system called BrainEx. BrainEx is an artificial perfusion system — that is, a system that takes over the functions normally regulated by the organ. The pigs had been killed four hours earlier at a U.S. Department of Agriculture slaughterhouse; their brains completely removed from the skulls.

BrainEx pumped an experiment solution into the brain that essentially mimic blood flow. It brought oxygen and nutrients to the tissues, giving brain cells the resources to begin many normal functions. The cells began consuming and metabolizing sugars. The brains' immune systems kicked in. Neuron samples could carry an electrical signal. Some brain cells even responded to drugs.

The researchers have managed to keep some brains alive for up to 36 hours, and currently do not know if BrainEx can have sustained the brains longer. "It is conceivable we are just preventing the inevitable, and the brain won't be able to recover," said Nenad Sestan, Yale neuroscientist and the lead researcher.

As a control, other brains received either a fake solution or no solution at all. None revived brain activity and deteriorated as normal.

The researchers hope the technology can enhance our ability to study the brain and its cellular functions. One of the main avenues of such studies would be brain disorders and diseases. This could point the way to developing new of treatments for the likes of brain injuries, Alzheimer's, Huntington's, and neurodegenerative conditions.

"This is an extraordinary and very promising breakthrough for neuroscience. It immediately offers a much better model for studying the human brain, which is extraordinarily important, given the vast amount of human suffering from diseases of the mind [and] brain," Nita Farahany, the bioethicists at the Duke University School of Law who wrote the study's commentary, told National Geographic.

An ethical gray matter

Before anyone gets an Island of Dr. Moreau vibe, it's worth noting that the brains did not approach neural activity anywhere near consciousness.

The BrainEx solution contained chemicals that prevented neurons from firing. To be extra cautious, the researchers also monitored the brains for any such activity and were prepared to administer an anesthetic should they have seen signs of consciousness.

Even so, the research signals a massive debate to come regarding medical ethics and our definition of death.

Most countries define death, clinically speaking, as the irreversible loss of brain or circulatory function. This definition was already at odds with some folk- and value-centric understandings, but where do we go if it becomes possible to reverse clinical death with artificial perfusion?

"This is wild," Jonathan Moreno, a bioethicist at the University of Pennsylvania, told the New York Times. "If ever there was an issue that merited big public deliberation on the ethics of science and medicine, this is one."

One possible consequence involves organ donations. Some European countries require emergency responders to use a process that preserves organs when they cannot resuscitate a person. They continue to pump blood throughout the body, but use a "thoracic aortic occlusion balloon" to prevent that blood from reaching the brain.

The system is already controversial because it raises concerns about what caused the patient's death. But what happens when brain death becomes readily reversible? Stuart Younger, a bioethicist at Case Western Reserve University, told Nature that if BrainEx were to become widely available, it could shrink the pool of eligible donors.

"There's a potential conflict here between the interests of potential donors — who might not even be donors — and people who are waiting for organs," he said.

It will be a while before such experiments go anywhere near human subjects. A more immediate ethical question relates to how such experiments harm animal subjects.

Ethical review boards evaluate research protocols and can reject any that causes undue pain, suffering, or distress. Since dead animals feel no pain, suffer no trauma, they are typically approved as subjects. But how do such boards make a judgement regarding the suffering of a "cellularly active" brain? The distress of a partially alive brain?

The dilemma is unprecedented.

Setting new boundaries

Another science fiction story that comes to mind when discussing this story is, of course, Frankenstein. As Farahany told National Geographic: "It is definitely has [sic] a good science-fiction element to it, and it is restoring cellular function where we previously thought impossible. But to have Frankenstein, you need some degree of consciousness, some 'there' there. [The researchers] did not recover any form of consciousness in this study, and it is still unclear if we ever could. But we are one step closer to that possibility."

She's right. The researchers undertook their research for the betterment of humanity, and we may one day reap some unimaginable medical benefits from it. The ethical questions, however, remain as unsettling as the stories they remind us of.

Ashes of cat named Pikachu to be launched into space

A space memorial company plans to launch the ashes of "Pikachu," a well-loved Tabby, into space.

GoFundMe/Steve Munt
Culture & Religion
  • Steve Munt, Pikachu's owner, created a GoFundMe page to raise money for the mission.
  • If all goes according to plan, Pikachu will be the second cat to enter space, the first being a French feline named Felicette.
  • It might seem frivolous, but the cat-lovers commenting on Munt's GoFundMe page would likely disagree.
Keep reading Show less