There are 5 eras in the universe's lifecycle. Right now, we're in the second era.

Astronomers find these five chapters to be a handy way of conceiving the universe's incredibly long lifespan.

Image based on logarithmic maps of the Universe put together by Princeton University researchers, and images produced by NASA based on observations made by their telescopes and roving spacecraft

Image source: Pablo Carlos Budassi
  • We're in the middle, or thereabouts, of the universe's Stelliferous era.
  • If you think there's a lot going on out there now, the first era's drama makes things these days look pretty calm.
  • Scientists attempt to understand the past and present by bringing together the last couple of centuries' major schools of thought.

    If you're fortunate enough to get yourself beneath a clear sky in a dark place on a moonless night, a gorgeous space-scape of stars waits. If you have binoculars and point them upward, you're treated to a mind-bogglingly dense backdrop of countless specks of light absolutely everywhere, stacked atop each other, burrowing outward and backward through space and time. Such is the universe of the cosmological era in which we live. It's called the Stelliferous era, and there are four others.

    The 5 eras of the universe

    There are many ways to consider and discuss the past, present, and future of the universe, but one in particular has caught the fancy of many astronomers. First published in 1999 in their book The Five Ages of the Universe: Inside the Physics of Eternity, Fred Adams and Gregory Laughlin divided the universe's life story into five eras:

    • Primordial era
    • Stellferous era
    • Degenerate era
    • Black Hole Era
    • Dark era

    The book was last updated according to current scientific understandings in 2013.

    It's worth noting that not everyone is a subscriber to the book's structure. Popular astrophysics writer Ethan C. Siegel, for example, published an article on Medium last June called "We Have Already Entered The Sixth And Final Era Of Our Universe." Nonetheless, many astronomers find the quintet a useful way of discuss such an extraordinarily vast amount of time.

    The Primordial era

    Image source: Sagittarius Production/Shutterstock

    This is where the universe begins, though what came before it and where it came from are certainly still up for discussion. It begins at the Big Bang about 13.8 billion years ago.

    For the first little, and we mean very little, bit of time, spacetime and the laws of physics are thought not yet to have existed. That weird, unknowable interval is the Planck Epoch that lasted for 10-44 seconds, or 10 million of a trillion of a trillion of a trillionth of a second. Much of what we currently believe about the Planck Epoch eras is theoretical, based largely on a hybrid of general-relativity and quantum theories called quantum gravity. And it's all subject to revision.

    That having been said, within a second after the Big Bang finished Big Banging, inflation began, a sudden ballooning of the universe into 100 trillion trillion times its original size.

    Within minutes, the plasma began cooling, and subatomic particles began to form and stick together. In the 20 minutes after the Big Bang, atoms started forming in the super-hot, fusion-fired universe. Cooling proceeded apace, leaving us with a universe containing mostly 75% hydrogen and 25% helium, similar to that we see in the Sun today. Electrons gobbled up photons, leaving the universe opaque.

    About 380,000 years after the Big Bang, the universe had cooled enough that the first stable atoms capable of surviving began forming. With electrons thus occupied in atoms, photons were released as the background glow that astronomers detect today as cosmic background radiation.

    Inflation is believed to have happened due to the remarkable overall consistency astronomers measure in cosmic background radiation. Astronomer Phil Plait suggests that inflation was like pulling on a bedsheet, suddenly pulling the universe's energy smooth. The smaller irregularities that survived eventually enlarged, pooling in denser areas of energy that served as seeds for star formation—their gravity pulled in dark matter and matter that eventually coalesced into the first stars.

    The Stelliferous era

    Image source: Casey Horner/unsplash

    The era we know, the age of stars, in which most matter existing in the universe takes the form of stars and galaxies during this active period.

    A star is formed when a gas pocket becomes denser and denser until it, and matter nearby, collapse in on itself, producing enough heat to trigger nuclear fusion in its core, the source of most of the universe's energy now. The first stars were immense, eventually exploding as supernovas, forming many more, smaller stars. These coalesced, thanks to gravity, into galaxies.

    One axiom of the Stelliferous era is that the bigger the star, the more quickly it burns through its energy, and then dies, typically in just a couple of million years. Smaller stars that consume energy more slowly stay active longer. In any event, stars — and galaxies — are coming and going all the time in this era, burning out and colliding.

    Scientists predict that our Milky Way galaxy, for example, will crash into and combine with the neighboring Andromeda galaxy in about 4 billion years to form a new one astronomers are calling the Milkomeda galaxy.

    Our solar system may actually survive that merger, amazingly, but don't get too complacent. About a billion years later, the Sun will start running out of hydrogen and begin enlarging into its red giant phase, eventually subsuming Earth and its companions, before shrining down to a white dwarf star.

    The Degenerate era

    Image source: Diego Barucco/Shutterstock/Big Think

    Next up is the Degenerate era, which will begin about 1 quintillion years after the Big Bang, and last until 1 duodecillion after it. This is the period during which the remains of stars we see today will dominate the universe. Were we to look up — we'll assuredly be outta here long before then — we'd see a much darker sky with just a handful of dim pinpoints of light remaining: white dwarfs, brown dwarfs, and neutron stars. These"degenerate stars" are much cooler and less light-emitting than what we see up there now. Occasionally, star corpses will pair off into orbital death spirals that result in a brief flash of energy as they collide, and their combined mass may become low-wattage stars that will last for a little while in cosmic-timescale terms. But mostly the skies will be be bereft of light in the visible spectrum.

    During this era, small brown dwarfs will wind up holding most of the available hydrogen, and black holes will grow and grow and grow, fed on stellar remains. With so little hydrogen around for the formation of new stars, the universe will grow duller and duller, colder and colder.

    And then the protons, having been around since the beginning of the universe will start dying off, dissolving matter, leaving behind a universe of subatomic particles, unclaimed radiation…and black holes.

    The Black Hole era

    Image source: Vadim Sadovski/Shutterstock/Big Think

    For a considerable length of time, black holes will dominate the universe, pulling in what mass and energy still remain.

    Eventually, though, black holes evaporate, albeit super-slowly, leaking small bits of their contents as they do. Plait estimates that a small black hole 50 times the mass of the sun would take about 1068 years to dissipate. A massive one? A 1 followed by 92 zeros.

    When a black hole finally drips to its last drop, a small pop of light occurs letting out some of the only remaining energy in the universe. At that point, at 1092, the universe will be pretty much history, containing only low-energy, very weak subatomic particles and photons.

    The Dark Era

    Image source: Big Think

    We can sum this up pretty easily. Lights out. Forever.

    Tonight, if it's clear, maybe you want to step outside, take a nice deep breath, and look up, grateful that we are where we are, and when we are, in spite of all the day's hardships. We've got a serious amount of temporal elbow room here, far more than we need, so not to worry, and those stars aren't going anywhere for a long, long time.

    A still from the film "We Became Fragments" by Luisa Conlon , Lacy Roberts and Hanna Miller, part of the Global Oneness Project library.

    Photo: Luisa Conlon , Lacy Roberts and Hanna Miller / Global Oneness Project
    Sponsored by Charles Koch Foundation
    • Stories are at the heart of learning, writes Cleary Vaughan-Lee, Executive Director for the Global Oneness Project. They have always challenged us to think beyond ourselves, expanding our experience and revealing deep truths.
    • Vaughan-Lee explains 6 ways that storytelling can foster empathy and deliver powerful learning experiences.
    • Global Oneness Project is a free library of stories—containing short documentaries, photo essays, and essays—that each contain a companion lesson plan and learning activities for students so they can expand their experience of the world.
    Keep reading Show less

    Four philosophers who realized they were completely wrong about things

    Philosophers like to present their works as if everything before it was wrong. Sometimes, they even say they have ended the need for more philosophy. So, what happens when somebody realizes they were mistaken?

    Sartre and Wittgenstein realize they were mistaken. (Getty Images)
    Culture & Religion

    Sometimes philosophers are wrong and admitting that you could be wrong is a big part of being a real philosopher. While most philosophers make minor adjustments to their arguments to correct for mistakes, others make large shifts in their thinking. Here, we have four philosophers who went back on what they said earlier in often radical ways. 

    Keep reading Show less

    The history of using the Insurrection Act against Americans

    Numerous U.S. Presidents invoked the Insurrection Act to to quell race and labor riots.

    The army during riots in Washington, DC, after the assassination of civil rights activist Martin Luther King Jr., April 1968.

    Photo by Michael Ochs Archives/Getty Images
    Politics & Current Affairs
    • U.S. Presidents have invoked the Insurrection Act on numerous occasions.
    • The controversial law gives the President some power to bring in troops to police the American people.
    • The Act has been used mainly to restore order following race and labor riots.
    Keep reading Show less

    Experts are already predicting an 'active' 2020 hurricane season

    It looks like a busy hurricane season ahead. Probably.

    Image source: Shashank Sahay/unsplash
    Surprising Science
    • Before the hurricane season even started in 2020, Arthur and Bertha had already blown through, and Cristobal may be brewing right now.
    • Weather forecasters see signs of a rough season ahead, with just a couple of reasons why maybe not.
    • Where's an El Niño when you need one?

    Welcome to Hurricane Season 2020. 2020, of course, scoffs at this calendric event much as it has everything else that's normal — meteorologists have already used up the year's A and B storm names before we even got here. And while early storms don't necessarily mean a bruising season ahead, forecasters expect an active season this year. Maybe storms will blow away the murder hornets and 13-year locusts we had planned.

    NOAA expects a busy season

    According to NOAA's Climate Prediction Center, an agency of the National Weather Service, there's a 60 percent chance that we're embarking upon a season with more storms than normal. There does, however, remain a 30 percent it'll be normal. Better than usual? Unlikely: Just a 10 percent chance.

    Where a normal hurricane season has an average of 12 named storms, 6 of which become hurricanes and 3 of which are major hurricanes, the Climate Prediction Center reckons we're on track for 13 to 29 storms, 6 to 10 of which will become hurricanes, and 3 to 6 of these will be category 3, 4, or 5, packing winds of 111 mph or higher.

    What has forecasters concerned are two factors in particular.

    This year's El Niño ("Little Boy") looks to be more of a La Niña ("Little Girl"). The two conditions are part of what's called the El Niño-Southern Oscillation (ENSO) cycle, which describes temperature fluctuations between the ocean and atmosphere in the east-central Equatorial Pacific. With an El Niño, waters in the Pacific are unusually warm, whereas a La Niña means unusually cool waters. NOAA says that an El Niño can suppress hurricane formation in the Atlantic, and this year that mitigating effect is unlikely to be present.

    Second, current conditions in the Atlantic and Caribbean suggest a fertile hurricane environment:

    • The ocean there is warmer than usual.
    • There's reduced vertical wind shear.
    • Atlantic tropical trade winds are weak.
    • There have been strong West African monsoons this year.

    Here's NOAA's video laying out their forecast:

    But wait.

    ArsTechnica spoke to hurricane scientist Phil Klotzbach, who agrees generally with NOAA, saying, "All in all, signs are certainly pointing towards an active season." Still, he notes a couple of signals that contradict that worrying outlook.

    First off, Klotzbach notes that the surest sign of a rough hurricane season is when its earliest storms form in the deep tropics south of 25°N and east of the Lesser Antilles. "When you get storm formations here prior to June 1, it's typically a harbinger of an extremely active season." Fortunately, this year's hurricanes Arthur and Bertha, as well as the maybe-imminent Cristobal, formed outside this region. So there's that.

    Second, Klotzbach notes that the correlation between early storm activity and a season's number of storms and intensities, is actually slightly negative. So while statistical connections aren't strongly predictive, there's at least some reason to think these early storms may augur an easy season ahead.

    Image source: NOAA

    Batten down the hatches early

    If 2020's taught us anything, it's how to juggle multiple crises at once, and layering an active hurricane season on top of SARS-CoV-2 — not to mention everything else — poses a special challenge. Warns Treasury Secretary Wilbur Ross, "As Americans focus their attention on a safe and healthy reopening of our country, it remains critically important that we also remember to make the necessary preparations for the upcoming hurricane season." If, as many medical experts expect, we're forced back into quarantine by additional coronavirus waves, the oceanic waves slamming against our shores will best be met by storm preparations put in place in a less last-minute fashion than usual.

    Ross adds, "Just as in years past, NOAA experts will stay ahead of developing hurricanes and tropical storms and provide the forecasts and warnings we depend on to stay safe."

    Let's hope this, at least, can be counted on in this crazy year.

    Scroll down to load more…