The Great Indoors, or Childhood's End?

See children's roaming rights shrink dramatically, in just three generations

Not too many decades ago, being a child in the western world meant having a license to roam: you spent a large chunk of your free time outside, exploring your surroundings, chasing adventure. This is the Huckleberry Finn mould of carefree childhood - even if you weren’t floating down the Mississippi on a raft, you could easily imagine that you were. 


That mould has definitely been broken. A British study called One False Move, investigating the mobility of children, found that the average eight-year-old saw its ‘home habitat’ shrink to one-ninth of its size within a single generation. In 1970, 80% of British kids 7 or 8 years of age were allowed to go to school unsupervised; by 1990, this figure had dropped below 10%.

The result of this gradual shrinkage of children’s habitat, is the effective end of the outdoor childhood. This evolution, by and large underreported, is put in stark perspective by this map. Zooming in on parts of Sheffield, in the north of England, it pictures the differences in size of the stomping grounds of four generations of the Thomas family - each snapped at eight years of age:

  • In 1919, George, the great-grandfather of the family, was allowed to walk six mile by himself to go fishing at Rother Valley.
  • In 1950, Jack, the grandfather, was allowed to walk one mile by himself to go play in the woods nearby. Like his father, he walked to school.
  • In 1979, Vicky, the mother, could walk by herself to the swimming pool, half a mile away.
  • In 2007, Ed, the son, was only able to walk to the end of the street on his own - a mere 300 yards. He was driven to school, and even to a place where he could ride his bike safely.
  • The map accompanied an article in the Daily Mail, which quoted a report warning that the reduced exposure to the outdoors could harm the mental well-being of children.

    Ironically, parental fears for their offspring's well-being have been an important factor in reducing their children’s unsupervised access to the great outdoors: fears of traffic, of predators, of being seen to have their children roam unsupervised. 

    But the growing list of fears, whether old or new, real or imagined, wasn’t the only factor driving the trend. George Thomas’s childhood home was overcrowded and held little attractions, while his great-grandson has a room of his own, stocked with games and toys, with access to the entertainment provided by tv and the internet. 

    Perhaps also to blame are the fragmentation of communities, and the concomitant increase in car-dependency. Could it be that the scrambled-egg city of today is a contributing factor to the fact that today’s is perhaps the first generation of children raised in zoo-like confinement?

    Strange Maps #571

    Got a strange map? Let me know at strangemaps@gmail.com.

    Big Think
    Sponsored by Lumina Foundation

    Upvote/downvote each of the videos below!

    As you vote, keep in mind that we are looking for a winner with the most engaging social venture pitch - an idea you would want to invest in.

    Keep reading Show less

    Essential financial life skills for 21st-century Americans

    Having these financial life skills can help you navigate challenging economic environments.

    Photo by Jp Valery on Unsplash
    Personal Growth
    • Americans are swimming in increasingly higher amounts of debt, even the upper middle class.
    • For many, this burden can be alleviated by becoming familiar with some straightforward financial concepts.
    • Here's some essential financial life skills needed to ensure your economic wellbeing.
    Keep reading Show less

    Scientists create a "lifelike" material that has metabolism and can self-reproduce

    An innovation may lead to lifelike evolving machines.

    Shogo Hamada/Cornell University
    Surprising Science
    • Scientists at Cornell University devise a material with 3 key traits of life.
    • The goal for the researchers is not to create life but lifelike machines.
    • The researchers were able to program metabolism into the material's DNA.
    Keep reading Show less

    New fossils suggest human ancestors evolved in Europe, not Africa

    Experts argue the jaws of an ancient European ape reveal a key human ancestor.

    Surprising Science
    • The jaw bones of an 8-million-year-old ape were discovered at Nikiti, Greece, in the '90s.
    • Researchers speculate it could be a previously unknown species and one of humanity's earliest evolutionary ancestors.
    • These fossils may change how we view the evolution of our species.

    Homo sapiens have been on earth for 200,000 years — give or take a few ten-thousand-year stretches. Much of that time is shrouded in the fog of prehistory. What we do know has been pieced together by deciphering the fossil record through the principles of evolutionary theory. Yet new discoveries contain the potential to refashion that knowledge and lead scientists to new, previously unconsidered conclusions.

    A set of 8-million-year-old teeth may have done just that. Researchers recently inspected the upper and lower jaw of an ancient European ape. Their conclusions suggest that humanity's forebearers may have arisen in Europe before migrating to Africa, potentially upending a scientific consensus that has stood since Darwin's day.

    Rethinking humanity's origin story

    The frontispiece of Thomas Huxley's Evidence as to Man's Place in Nature (1863) sketched by natural history artist Benjamin Waterhouse Hawkins. (Photo: Wikimedia Commons)

    As reported in New Scientist, the 8- to 9-million-year-old hominin jaw bones were found at Nikiti, northern Greece, in the '90s. Scientists originally pegged the chompers as belonging to a member of Ouranopithecus, an genus of extinct Eurasian ape.

    David Begun, an anthropologist at the University of Toronto, and his team recently reexamined the jaw bones. They argue that the original identification was incorrect. Based on the fossil's hominin-like canines and premolar roots, they identify that the ape belongs to a previously unknown proto-hominin.

    The researchers hypothesize that these proto-hominins were the evolutionary ancestors of another European great ape Graecopithecus, which the same team tentatively identified as an early hominin in 2017. Graecopithecus lived in south-east Europe 7.2 million years ago. If the premise is correct, these hominins would have migrated to Africa 7 million years ago, after undergoing much of their evolutionary development in Europe.

    Begun points out that south-east Europe was once occupied by the ancestors of animals like the giraffe and rhino, too. "It's widely agreed that this was the found fauna of most of what we see in Africa today," he told New Scientists. "If the antelopes and giraffes could get into Africa 7 million years ago, why not the apes?"

    He recently outlined this idea at a conference of the American Association of Physical Anthropologists.

    It's worth noting that Begun has made similar hypotheses before. Writing for the Journal of Human Evolution in 2002, Begun and Elmar Heizmann of the Natural history Museum of Stuttgart discussed a great ape fossil found in Germany that they argued could be the ancestor (broadly speaking) of all living great apes and humans.

    "Found in Germany 20 years ago, this specimen is about 16.5 million years old, some 1.5 million years older than similar species from East Africa," Begun said in a statement then. "It suggests that the great ape and human lineage first appeared in Eurasia and not Africa."

    Migrating out of Africa

    In the Descent of Man, Charles Darwin proposed that hominins descended out of Africa. Considering the relatively few fossils available at the time, it is a testament to Darwin's astuteness that his hypothesis remains the leading theory.

    Since Darwin's time, we have unearthed many more fossils and discovered new evidence in genetics. As such, our African-origin story has undergone many updates and revisions since 1871. Today, it has splintered into two theories: the "out of Africa" theory and the "multi-regional" theory.

    The out of Africa theory suggests that the cradle of all humanity was Africa. Homo sapiens evolved exclusively and recently on that continent. At some point in prehistory, our ancestors migrated from Africa to Eurasia and replaced other subspecies of the genus Homo, such as Neanderthals. This is the dominant theory among scientists, and current evidence seems to support it best — though, say that in some circles and be prepared for a late-night debate that goes well past last call.

    The multi-regional theory suggests that humans evolved in parallel across various regions. According to this model, the hominins Homo erectus left Africa to settle across Eurasia and (maybe) Australia. These disparate populations eventually evolved into modern humans thanks to a helping dollop of gene flow.

    Of course, there are the broad strokes of very nuanced models, and we're leaving a lot of discussion out. There is, for example, a debate as to whether African Homo erectus fossils should be considered alongside Asian ones or should be labeled as a different subspecies, Homo ergaster.

    Proponents of the out-of-Africa model aren't sure whether non-African humans descended from a single migration out of Africa or at least two major waves of migration followed by a lot of interbreeding.

    Did we head east or south of Eden?

    Not all anthropologists agree with Begun and his team's conclusions. As noted by New Scientist, it is possible that the Nikiti ape is not related to hominins at all. It may have evolved similar features independently, developing teeth to eat similar foods or chew in a similar manner as early hominins.

    Ultimately, Nikiti ape alone doesn't offer enough evidence to upend the out of Africa model, which is supported by a more robust fossil record and DNA evidence. But additional evidence may be uncovered to lend further credence to Begun's hypothesis or lead us to yet unconsidered ideas about humanity's evolution.