384 - Does My Metro Area Look Big in this Ring Road?

93_ringroads

\n

In London Orbital, writer, walker and Londoner Iain Sinclair approaches his favourite subject – his home town – by circumambulating it. The book details his trek along the M25, London’s ring road.


\n

Sinclair completes the 117 mile (188 km) journey in 592 pages, which works out to 5 pages per mile (or 3 per kilometer). As ring roads go, London’s is one of the longer ones – which can with some difficulty be gleaned from this map.

\n

The map layers the peripheral highways of 27 of the world’s larger cities onto a poster, designed by the Rice School of Architecture in Houston, TX. That location is no coincidence, because the poster highlights a record for Houston: it has the largest ring road in the world (or at least the largest of all the world cities surveyed).

\n

However, it is unclear how long a book Mr Sinclair would have to write, were he to transplant his peripatetic procedure (and the same distance-to-volume ratio) from London to Houston.

\n

The city at the centre of the US’s sixth-largest metropolitan area (with 5.7 million inhabitants) has three ring roads: Interstate 610 [circling downtown in a 38-mile (61-km) loop], Beltway 8 [about 83 miles, or 137 km] and the as yet unfinished Grand Parkway [State Highway 99].

\n

Clearly, for Houston to have the world’s longest loop, the big black blob on this map could only be the latter. But a few problems arise. Four, to be exact.

\n

One: the Grand Parkway is far from finished. Only two of 11 segments are completed. However tempting it may be, it is hardly fair to tout something as “the world’s largest” before it’s been completed. Especially since, as any large-scale project, the Grand Parkway has its share of detractors. So it might never get done.

\n

Two: even if it is to be completed, plans may change and length might vary. The website for the Grand Parkway Association doesn’t specify beyond the “circumferential scenic highway” going to be “180+ miles” (app. 290 km) long.

\n

Three: the Houston orbital outsizes all others on this map to such an extent that it’s difficult to imagine its circumference to be no larger than London’s by a factor of 180 to 117.

\n

And finally, four: now that I’m mentioning London’s orbital road again — the website for the UK’s Highway Agency states that the M25 is… the longest ring road in the world.

\n

While the identity of the actual highway(s) surrounding Houston and depicted here remains elusive, it is beyond doubt that the Texan city has a large surface, a fact attested by a map posted earlier on this blog (#327), the discussion of which also touches upon the phenomenon of sprawl (large conurbations with relatively low population density) as a result of increased mobility.

\n

 Many thanks to Owen Evans, Scott Bodenheimer, Iain Kennedy (and anyone I might have overlooked) for alerting me to this map, found here on Thumb.

\n
Big Think
Sponsored by Lumina Foundation

Upvote/downvote each of the videos below!

As you vote, keep in mind that we are looking for a winner with the most engaging social venture pitch - an idea you would want to invest in.

Keep reading Show less

Essential financial life skills for 21st-century Americans

Having these financial life skills can help you navigate challenging economic environments.

Photo by Jp Valery on Unsplash
Personal Growth
  • Americans are swimming in increasingly higher amounts of debt, even the upper middle class.
  • For many, this burden can be alleviated by becoming familiar with some straightforward financial concepts.
  • Here's some essential financial life skills needed to ensure your economic wellbeing.
Keep reading Show less

Scientists create a "lifelike" material that has metabolism and can self-reproduce

An innovation may lead to lifelike evolving machines.

Shogo Hamada/Cornell University
Surprising Science
  • Scientists at Cornell University devise a material with 3 key traits of life.
  • The goal for the researchers is not to create life but lifelike machines.
  • The researchers were able to program metabolism into the material's DNA.
Keep reading Show less

New fossils suggest human ancestors evolved in Europe, not Africa

Experts argue the jaws of an ancient European ape reveal a key human ancestor.

Surprising Science
  • The jaw bones of an 8-million-year-old ape were discovered at Nikiti, Greece, in the '90s.
  • Researchers speculate it could be a previously unknown species and one of humanity's earliest evolutionary ancestors.
  • These fossils may change how we view the evolution of our species.

Homo sapiens have been on earth for 200,000 years — give or take a few ten-thousand-year stretches. Much of that time is shrouded in the fog of prehistory. What we do know has been pieced together by deciphering the fossil record through the principles of evolutionary theory. Yet new discoveries contain the potential to refashion that knowledge and lead scientists to new, previously unconsidered conclusions.

A set of 8-million-year-old teeth may have done just that. Researchers recently inspected the upper and lower jaw of an ancient European ape. Their conclusions suggest that humanity's forebearers may have arisen in Europe before migrating to Africa, potentially upending a scientific consensus that has stood since Darwin's day.

Rethinking humanity's origin story

The frontispiece of Thomas Huxley's Evidence as to Man's Place in Nature (1863) sketched by natural history artist Benjamin Waterhouse Hawkins. (Photo: Wikimedia Commons)

As reported in New Scientist, the 8- to 9-million-year-old hominin jaw bones were found at Nikiti, northern Greece, in the '90s. Scientists originally pegged the chompers as belonging to a member of Ouranopithecus, an genus of extinct Eurasian ape.

David Begun, an anthropologist at the University of Toronto, and his team recently reexamined the jaw bones. They argue that the original identification was incorrect. Based on the fossil's hominin-like canines and premolar roots, they identify that the ape belongs to a previously unknown proto-hominin.

The researchers hypothesize that these proto-hominins were the evolutionary ancestors of another European great ape Graecopithecus, which the same team tentatively identified as an early hominin in 2017. Graecopithecus lived in south-east Europe 7.2 million years ago. If the premise is correct, these hominins would have migrated to Africa 7 million years ago, after undergoing much of their evolutionary development in Europe.

Begun points out that south-east Europe was once occupied by the ancestors of animals like the giraffe and rhino, too. "It's widely agreed that this was the found fauna of most of what we see in Africa today," he told New Scientists. "If the antelopes and giraffes could get into Africa 7 million years ago, why not the apes?"

He recently outlined this idea at a conference of the American Association of Physical Anthropologists.

It's worth noting that Begun has made similar hypotheses before. Writing for the Journal of Human Evolution in 2002, Begun and Elmar Heizmann of the Natural history Museum of Stuttgart discussed a great ape fossil found in Germany that they argued could be the ancestor (broadly speaking) of all living great apes and humans.

"Found in Germany 20 years ago, this specimen is about 16.5 million years old, some 1.5 million years older than similar species from East Africa," Begun said in a statement then. "It suggests that the great ape and human lineage first appeared in Eurasia and not Africa."

Migrating out of Africa

In the Descent of Man, Charles Darwin proposed that hominins descended out of Africa. Considering the relatively few fossils available at the time, it is a testament to Darwin's astuteness that his hypothesis remains the leading theory.

Since Darwin's time, we have unearthed many more fossils and discovered new evidence in genetics. As such, our African-origin story has undergone many updates and revisions since 1871. Today, it has splintered into two theories: the "out of Africa" theory and the "multi-regional" theory.

The out of Africa theory suggests that the cradle of all humanity was Africa. Homo sapiens evolved exclusively and recently on that continent. At some point in prehistory, our ancestors migrated from Africa to Eurasia and replaced other subspecies of the genus Homo, such as Neanderthals. This is the dominant theory among scientists, and current evidence seems to support it best — though, say that in some circles and be prepared for a late-night debate that goes well past last call.

The multi-regional theory suggests that humans evolved in parallel across various regions. According to this model, the hominins Homo erectus left Africa to settle across Eurasia and (maybe) Australia. These disparate populations eventually evolved into modern humans thanks to a helping dollop of gene flow.

Of course, there are the broad strokes of very nuanced models, and we're leaving a lot of discussion out. There is, for example, a debate as to whether African Homo erectus fossils should be considered alongside Asian ones or should be labeled as a different subspecies, Homo ergaster.

Proponents of the out-of-Africa model aren't sure whether non-African humans descended from a single migration out of Africa or at least two major waves of migration followed by a lot of interbreeding.

Did we head east or south of Eden?

Not all anthropologists agree with Begun and his team's conclusions. As noted by New Scientist, it is possible that the Nikiti ape is not related to hominins at all. It may have evolved similar features independently, developing teeth to eat similar foods or chew in a similar manner as early hominins.

Ultimately, Nikiti ape alone doesn't offer enough evidence to upend the out of Africa model, which is supported by a more robust fossil record and DNA evidence. But additional evidence may be uncovered to lend further credence to Begun's hypothesis or lead us to yet unconsidered ideas about humanity's evolution.