Self-Motivation
David Goggins
Former Navy Seal
Career Development
Bryan Cranston
Actor
Critical Thinking
Liv Boeree
International Poker Champion
Emotional Intelligence
Amaryllis Fox
Former CIA Clandestine Operative
Management
Chris Hadfield
Retired Canadian Astronaut & Author
Learn
from the world's big
thinkers
Start Learning

Radioactive swirls in the cosmos may rewrite the origin story of the universe

Respected Oxford mathematician Roger Penrose sees swirls of radioactivity in a sky map as evidence that the Big Bang isn’t true. These “Hawking rings” suggest to him that the universe expands and collapses over and over.

Swirls of radiation in the cosmos may mean another universe has come this way before. (Jimmy Musto/unsplash)

The idea is called “conformal cyclic cosmology" (CCC), and what it asserts is that, rather than starting from a big bang, the universe continually expands and contracts, each time leaving behind tiny bits of electromagnetic radiation that remain as the process occurs over and over. The late Stephen Hawking predicted tiny dots of radiation, which others call 'Hawking points', left over from this cycle. Now, the scientists behind CCC theory say they can see possible examples of 'Hawking radiation' in a map created by a radio telescope at the South Pole. They've dubbed them 'Hawking holes'. “I think," says team leader, Oxford's Roger Penrose, “he would have been delighted to see the actual effect he predicted in an observation."


In 2014, the BICEP2 South Pole telescope captured images in which there were swirls of polarized light in the cosmic microwave background (CMB). The BICEP2 team interpreted these swirls as artifacts of gravitational waves from the expansion occurring after the Big Bang, and say that subsequent data from the Planck observatory suggests that these 'B-modes' are interstellar dust.

(B-mode polarisation patterns. Credit: BICEP2)

Penrose and his colleagues see something else. They see signs of the radioactive rings that CCC predicts would be left behind after a previous universe shrank back to a Hawking point, as verified by thousands of CCC computer models they've run. According to Penrose, our measurements of the CMB go back no further than 380,000 years, and so we can't see the tiny points themselves, but just the radioactive rings they've left behind.

In particular, they're intrigued by certain areas in the BICEP2 map that show rings of polarized light—this indicates to them a vast temperature differential between the ring's inner and outer boundaries.

(Penrose Institute)

Some say the map on which Penrose is basing his conclusions isn't really accurate enough to take so seriously. The BICEP2 team hasn't yet released that data from which the map was generated, and there's a certain amount of rounding-off in the map Penrose is working from. Huge areas of space are represented by single pixels in the image, so there's insufficient detail present in any one pixel to make it that useful for serious analysis. The raw data, when released, will be more granular in the information it presents.

Even so, Penrose's faith in the image he has is based on his teams' models that predict what the map seems to show. His colleague Daniel An says, “That means they were probably caused not by chance, but by some physical phenomenon." The team's analysis of the corresponding Planck data verifies that the swirls aren't just visual artifacts, but that there is really at least something there. Something consistent with their 4,000 CCC simulations.

If conformal cyclic cosmology is correct, the Big Bang theory isn't. Of course, before such an extraordinary shift in perspective occurs, equally strong evidence for CCC will be necessary. Still, Penrose's idea—though preliminary, pending receipt of the BICEP2 data—is tantalizing. “What we claim we're seeing," he says, “is the final remnant after a black hole has evaporated away in the previous eon." Make that the previous universe.

The “new normal” paradox: What COVID-19 has revealed about higher education

Higher education faces challenges that are unlike any other industry. What path will ASU, and universities like ASU, take in a post-COVID world?

Photo: Luis Robayo/AFP via Getty Images
Sponsored by Charles Koch Foundation
  • Everywhere you turn, the idea that coronavirus has brought on a "new normal" is present and true. But for higher education, COVID-19 exposes a long list of pernicious old problems more than it presents new problems.
  • It was widely known, yet ignored, that digital instruction must be embraced. When combined with traditional, in-person teaching, it can enhance student learning outcomes at scale.
  • COVID-19 has forced institutions to understand that far too many higher education outcomes are determined by a student's family income, and in the context of COVID-19 this means that lower-income students, first-generation students and students of color will be disproportionately afflicted.
Keep reading Show less

Masturbation boosts your immune system, helping you fight off infection and illness

Can an orgasm a day really keep the doctor away?

Sexual arousal and orgasm increase the number of white blood cells in the body, making it easier to fight infection and illness.

Image by Yurchanka Siarhei on Shutterstock
Sex & Relationships
  • Achieving orgasm through masturbation provides a rush of feel-good hormones (such as dopamine, serotonin and oxytocin) and can re-balance our levels of cortisol (a stress-inducing hormone). This helps our immune system function at a higher level.
  • The surge in "feel-good" hormones also promotes a more relaxed and calm state of being, making it easier to achieve restful sleep, which is a critical part in maintaining a high-functioning immune system.
  • Just as bad habits can slow your immune system, positive habits (such as a healthy sleep schedule and active sex life) can help boost your immune system which can prevent you from becoming sick.
Keep reading Show less

The biology of aliens: How much do we know?

Hollywood has created an idea of aliens that doesn't match the science.

The biology of aliens: How much do we know? | Michio Kaku, ...
Videos
  • Ask someone what they think aliens look like and you'll probably get a description heavily informed by films and pop culture. The existence of life beyond our planet has yet to be confirmed, but there are clues as to the biology of extraterrestrials in science.
  • "Don't give them claws," says biologist E.O. Wilson. "Claws are for carnivores and you've got to be an omnivore to be an E.T. There just isn't enough energy available in the next trophic level down to maintain big populations and stable populations that can evolve civilization."
  • In this compilation, Wilson, theoretical physicist Michio Kaku, Bill Nye, and evolutionary biologist Jonathan B. Losos explain why aliens don't look like us and why Hollywood depictions are mostly inaccurate.
Keep reading Show less

Live on Tuesday | Personal finance in the COVID-19 era

Sallie Krawcheck and Bob Kulhan will be talking money, jobs, and how the pandemic will disproportionally affect women's finances.

Scroll down to load more…
Quantcast