Radioactive swirls in the cosmos may rewrite the origin story of the universe

Respected Oxford mathematician Roger Penrose sees swirls of radioactivity in a sky map as evidence that the Big Bang isn’t true. These “Hawking rings” suggest to him that the universe expands and collapses over and over.

The idea is called “conformal cyclic cosmology” (CCC), and what it asserts is that, rather than starting from a big bang, the universe continually expands and contracts, each time leaving behind tiny bits of electromagnetic radiation that remain as the process occurs over and over. The late Stephen Hawking predicted tiny dots of radiation, which others call 'Hawking points', left over from this cycle. Now, the scientists behind CCC theory say they can see possible examples of 'Hawking radiation' in a map created by a radio telescope at the South Pole. They’ve dubbed them 'Hawking holes'. “I think,” says team leader, Oxford’s Roger Penrose, “he would have been delighted to see the actual effect he predicted in an observation.”


In 2014, the BICEP2 South Pole telescope captured images in which there were swirls of polarized light in the cosmic microwave background (CMB). The BICEP2 team interpreted these swirls as artifacts of gravitational waves from the expansion occurring after the Big Bang, and say that subsequent data from the Planck observatory suggests that these 'B-modes' are interstellar dust.

B-mode polarisation patterns. Credit: BICEP2.

Penrose and his colleagues see something else. They see signs of the radioactive rings that CCC predicts would be left behind after a previous universe shrank back to a Hawking point, as verified by thousands of CCC computer models they’ve run. According to Penrose, our measurements of the CMB go back no further than 380,000 years, and so we can’t see the tiny points themselves, but just the radioactive rings they’ve left behind.

In particular, they’re intrigued by certain areas in the BICEP2 map that show rings of polarized light—this indicates to them a vast temperature differential between the ring's inner and outer boundaries.

(Credit: Daniel An, Krzysztof A. Meissner, and Roger Penrose)

Some say the map on which Penrose is basing his conclusions isn’t really accurate enough to take so seriously. The BICEP2 team hasn’t yet released that data from which the map was generated, and there’s a certain amount of rounding-off in the map Penrose is working from. Huge areas of space are represented by single pixels in the image, so there’s insufficient detail present in any one pixel to make it that useful for serious analysis. The raw data, when released, will be more granular in the information it presents.

Even so, Penrose’s faith in the image he has is based on his teams' models that predict what the map seems to show. His colleague Daniel An says, “That means they were probably caused not by chance, but by some physical phenomenon.” The team’s analysis of the corresponding Planck data verifies that the swirls aren’t just visual artifacts, but that there is really at least something there. Something consistent with their 4,000 CCC simulations.

If conformal cyclic cosmology is correct, the Big Bang theory isn’t. Of course, before such an extraordinary shift in perspective occurs, equally strong evidence for CCC will be necessary. Still, Penrose’s idea—though preliminary, pending receipt of the BICEP2 data—is tantalizing. “What we claim we’re seeing,” he says, “is the final remnant after a black hole has evaporated away in the previous eon.” Make that the previous universe.

A dark matter hurricane is crashing into Earth

Giving our solar system a "slap in the face"

Surprising Science
  • A stream of galactic debris is hurtling at us, pulling dark matter along with it
  • It's traveling so quickly it's been described as a hurricane of dark matter
  • Scientists are excited to set their particle detectors at the onslffaught
Keep reading Show less

We are heading for a New Cretaceous, not for a new normal

The climate change we're witnessing is more dramatic than we might think.

Image credit: NASA Goddard Space Flight Center from Greenbelt, MD, USA
Surprising Science

A lazy buzz phrase – 'Is this the new normal?' – has been doing the rounds as extreme climate events have been piling up over the past year. To which the riposte should be: it's worse than that – we're on the road to even more frequent, more extreme events than we saw this year.

Keep reading Show less

New study reveals what time we burn the most calories

Once again, our circadian rhythm points the way.

Photo: Victor Freitas / Unsplash
Surprising Science
  • Seven individuals were locked inside a windowless, internetless room for 37 days.
  • While at rest, they burned 130 more calories at 5 p.m. than at 5 a.m.
  • Morning time again shown not to be the best time to eat.
Keep reading Show less