Explaining Jupiter’s wild appearance

New research spots a remarkable meeting of Jupiter’s jet streams and its magnetic field and proposes that it may contain the explanation for the planets’ striking cloud patterns.

It’s a planet whose unanswered mysteries are as baffling as its appearance is captivating. Pretty much any image one sees of the gas giant can stop you in your tracks to stare in awe at the ever-shifting bands of colors and swirls and wonder “What is going on here?” You’re not alone in feeling that way. The more scientists learn — much of it from NASA’s Juno probe, which arrived at Jupiter in July 2016 and will continue orbiting it until 2022 — the more out of their depth they’re likely to feel. As Juno principal investigator Scott Bolton tells BBC, “We're getting the first really close up and personal look at Jupiter and we're seeing that a lot of our ideas were incorrect and maybe naive.” We do know Jupiter has a massive, uneven magnetic field, and a new study asserts that it’s behind — or beneath — the planet's peculiar cloud formations.

Jupiter is not like Earth

Jupiter is a gas giant, not a solid rock like the planet on which we live. It’s mostly hydrogen and helium, plus ammonium, which we know here as gasses. This means that trying to get a peek under Jupiter’s dazzling cloud cover isn’t really the thing: The cloud cover is Jupiter.

If you were to travel inward from the clouds’ tops, you’d eventually reach a depth where the hydrogen is compressed into a liquid. According to NASA Space Place, this is due to 650 million pounds of pressure packing the hydrogen molecules together into that form. Rather than thinking of Jupiter as solid like Earth, it would be more on-the-mark to imagine a boiling, super-hot — 43,000°F (24,000°C) — soup pulled into a ball shape by the massive object’s equally gigantic gravitational field. It may be that there’s a solid core at the center of it all, but it’s not yet clear that there is.


The spectacular turbulence we see is the product of Jupiter’s jet streams, winds that circle the planet. They reach down into Jupiter about 1,800 miles, or 300 km, and then stop. Why this happens is one of the riddles the new research’s authors, Navid Constantinou and Jeffrey Parker, wanted to solve.

Spectacular, mystifying pictures

Meanwhile, so many of the images of Jupiter we see pose other questions.

The Great Red Spot tantalizes

Image of the Great Red Spot from the Hubble Space Telescope (NASA)

Jupiter’s infamous Great Red Spot seems to be a huge long-running storm that travels erratically across the planet — we’ve been observing it for at least 150. years, and maybe as far back as 1660. It’s twice as wide as the Earth and has winds blowing at about 400 mph. That’s about all we’re really sure about.

Jupiter’s polar regions astound

"Even in rooms of hardened researchers, these images of swirling clouds have drawn gasps," NASA’s Mike Janssen tells BBC.

Jupiter’s south pole (NASA/JPL-Caltech/SwRI/MSSS/Betsy Asher Hall/Gervasio Robles)

Infrared image of North pole cyclones (NASA/JPL)

Here’s an infrared Juno flyover of Jupiter’s north pole:

Dumbfounding detail

Much of the imagery sent back by Juno as it travels its 53-day elliptical orbit around Jupiter has been characterized by an incredible amount of visual detail, revealing things we’ve never seen.

For example, this area appears as a solid white swirl on older pictures. But Juno reveals its true complexity.

(NASA/JPL-Caltech/SwRI/MSSS/Gerald Eichstädt /Seán Doran)

Fantastic image of Jupiter’s northern hemisphere (NASA/JPL-Caltech/SwRI/MSSS/Kevin M. Gill)

Magnetism runs the show

One of the insights delivered by the Juno mission is that Jupiter has a surprisingly strong magnetic field, and also that it’s irregularly shaped. Jack Connerney, lead for the Juno mission's magnetic field aspect tells CNBC, ”Already we see that the magnetic field looks lumpy: it is stronger in some places and weaker in others. This uneven distribution suggests that the field might be generated by dynamo action closer to the surface, above the layer of metallic hydrogen. Every flyby we execute gets us closer to determining where and how Jupiter's dynamo works."

What Constantinou and Parker’s study of mathematical models has revealed is that a certain amount of intense pressure causes electrons from hydrogen and helium molecules to break loose. Once freed to bounce around, they form magnetic and electric fields. The key observation, though, is that on Jupiter, the required amount of pressure occurs at — and these figures should sound familiar — 1,800 miles, or 300 km down from the outer surface of the planet’s cloud cover. That's exactly the depth at which the planets jet streams stop. Coincidence? What the scientists conclude, then, is that the collision between Jupiter’s jet streams and its uneven, lumpy magnetic field account for the bizarre stop-start-and-swirl visual patterns we see. The exact mechanics of this interaction will require further study to fully understand, but this seems a promising start at answering one of the most compelling mysteries in our solar system.

LinkedIn meets Tinder in this mindful networking app

Swipe right to make the connections that could change your career.

Getty Images
Swipe right. Match. Meet over coffee or set up a call.

No, we aren't talking about Tinder. Introducing Shapr, a free app that helps people with synergistic professional goals and skill sets easily meet and collaborate.

Keep reading Show less

4 reasons Martin Luther King, Jr. fought for universal basic income

In his final years, Martin Luther King, Jr. become increasingly focused on the problem of poverty in America.

(Photo by J. Wilds/Keystone/Getty Images)
Politics & Current Affairs
  • Despite being widely known for his leadership role in the American civil rights movement, Martin Luther King, Jr. also played a central role in organizing the Poor People's Campaign of 1968.
  • The campaign was one of the first to demand a guaranteed income for all poor families in America.
  • Today, the idea of a universal basic income is increasingly popular, and King's arguments in support of the policy still make a good case some 50 years later.
Keep reading Show less

A world map of Virgin Mary apparitions

She met mere mortals with and without the Vatican's approval.

Strange Maps
  • For centuries, the Virgin Mary has appeared to the faithful, requesting devotion and promising comfort.
  • These maps show the geography of Marian apparitions – the handful approved by the Vatican, and many others.
  • Historically, Europe is where most apparitions have been reported, but the U.S. is pretty fertile ground too.
Keep reading Show less

Why I wear my life on my skin

For Damien Echols, tattoos are part of his existential armor.

  • In prison Damien Echols was known by his number SK931, not his name, and had his hair sheared off. Stripped of his identity, the only thing he had left was his skin.
  • This is why he began tattooing things that are meaningful to him — to carry a "suit of armor" made up the images of the people and objects that have significance to him, from his friends to talismans.
  • Echols believes that all places are imbued with divinity: "If you interact with New York City as if there's an intelligence behind... then it will behave towards you the same way."
Keep reading Show less