A Stanford Scientist’s Startling New Source for Painkillers

Christina Smolke, a brilliant Stanford scientist, has engineered yeast that can produce opiates without poppies.

Christina Smolke (Stanford)

When a patient is in serious need of pain relief, doctors turn to strong opiates, painkillers that include morphine, oxycodone, pethidine, and tramadol. After surgery or major injury, they help a patient recover, and in the last hours of life for many, morphine in particular brings merciful relief from otherwise untreatable pain. Though these powerful narcotics are infamous for the frequency with which they're abused, their importance in a medical setting is indisputable. They all come from a single source: the opium in poppy plants. Until now.


The awareness of poppies' value goes way back. The earliest reference is from 3400 B.C. when the plants were called Hul Gil, or “the joy plant" in lower Mesopotamia (southwest Asia). It's grown today primarily in the dry, warm climate of a just narrow stretch of mountains in Central Asia, and more recently Colombia and Mexico. Because the world's supply of opium is dependent on the poppies' unreliable crop size, and because much of it is diverted into the even-more lucrative production of heroin, it's an expensive, hard-to-control substance that keeps the cost of painkillers high and makes access to pain relief difficult for 5.5 billion people according to the World Health Organization.

Enter a remarkable young professor from Stanford named Christina Smolke, a new star in the field of synthetic biology.

Smolke and her team (STANFORD)

Smolke has developed a method for synthesizing opiates from yeast, a far more readily available source than opiates. Her technique could radically reduce the cost of producing opiates, by a factor of ten, and may also provide a way forward for producing other medicines currently derived from plants.

Synthetic biology views cells as production modules, tiny factories that can be retooled to output specific compounds of value. Smolke is a pioneer in the field, gifted at creating complex chemical interactions, or “pathways."

Smolke has always enjoyed making things, and eventually gravitated to synthetic biology as a field in which the possibilities for constructing brand-new things was wide-open. She recently spoke to Melissa Pandika of OZY, telling her, ““The idea of building with biology really spoke to me." For six years, starting when she was just 28, Smolke ran her own lab at Caltech. Opiod production wasn't her immediate goal.

The underlying tools — really, processes — that make made her breakthrough possible didn't exist when she started. To begin with, her frustration at the hit-and-miss nature of experimentation led her to develop a modular and extensible RNA-based platform in 2012 that could make the control of genes in pathway production more consistent and predictable.

RNA platform (IGEM)

After that, in search of a worthy challenge, Smolke decided to see if she could develop a complicated 20-gene opiod pathway. Since science hadn't yet nailed down its details, though, Smolke and her team decided to try and engineer their own, from a hodgepodge of enzymic sources including yeast itself, medical plants, bacteria, and mammals. They wound up with their miracle strains of yeast that can produce small amounts hydrocodone and thebaine (for oxycodone) enzymes from glucose.

Smolke expects to achieve poppy-free, commercial-scale production of opiates in a few years, and is now casting her attention towards other synthetic medicines, as well as a few inventions of her own, mentioning a non-addictive form of opium as one dream drug she'd like to see.

Fans of Breaking Bad — and those mindful of illegal-drug issues in general — may be thinking, “Oh, great. Now anyone can produce controlled substances at home." Not to worry. Smolke's process requires a highly controlled environment that's not readily duplicated. So leave that old beer-making rig in the basement.

Given the merciful relief opiates provide to those in severe pain, Smolke's immediate achievement is a hopeful moment for those 5.5 billion people without access to such relief. And it's even more exciting as a method that may point a way forward to the synthesis of countless other life-changing medications.

The world and workforce need wisdom. Why don’t universities teach it?

Universities claim to prepare students for the world. How many actually do it?

Photo: Take A Pix Media / Getty Images
Sponsored by Charles Koch Foundation
  • Many university mission statements do not live up to their promise, writes Ben Nelson, founder of Minerva, a university designed to develop intellect over content memorization.
  • The core competencies that students need for success—critical thinking, communication, problem solving, and cross-cultural understanding, for example—should be intentionally taught, not left to chance.
  • These competencies can be summed up with one word: wisdom. True wisdom is the ability to apply one's knowledge appropriately when faced with novel situations.
Keep reading Show less

What the world will look like in the year 250,002,018

This is what the world will look like, 250 million years from now

On Pangaea Proxima, Lagos will be north of New York, and Cape Town close to Mexico City
Surprising Science

To us humans, the shape and location of oceans and continents seems fixed. But that's only because our lives are so short.

Keep reading Show less

From zero to hero in 18 years: How SpaceX became a nation-state

SpaceX's momentous Crew Dragon launch is a sign of things to come for the space industry, and humanity's future.

A CGI render of SpaceX's Falcon Heavy and Crew Dragon.

Image: SpaceX
Politics & Current Affairs
  • SpaceX was founded in 2002 and was an industry joke for many years. Eighteen years later, it is the first private company to launch astronauts to the International Space Station.
  • SpaceX's Crew Dragon launched NASA astronauts Bob Behnken and Doug Hurley to the ISS at XXXpm today. The journey will take about 19 hours.
  • Dylan Taylor, chairman and CEO of Voyager Space Holdings, looks at SpaceX's journey from startup to a commercial space company with the operating power of a nation-state.
Keep reading Show less

Six-month-olds recognize (and like) when they’re being imitated

A new study may help us better understand how children build social cognition through caregiver interaction.

Personal Growth
  • Scientists speculate imitation helps develop social cognition in babies.
  • A new study out of Lund University shows that six-month-olds look and smile more at imitating adults.
  • Researchers hope the data will spur future studies to discover what role caregiver imitation plays in social cognition development.
  • Keep reading Show less
    Scroll down to load more…