A New Implant is Being Developed for Enhancing Human Memory

A researcher is experimenting with an artificial hippocampus to learn how to strengthen and store memories.l 

Human expandable memory
Would that it was this easy.

In 1998, Andy Clark and David Chalmers proposed that a computer operates together with our brains as an “extended mind," potentially offering additional processing capabilities as we work out problems, as well as an annex for our memories containing information, images, and so on. Now a professor of biomedical engineering at the University of Southern California, Theodore Berger, is working to bring to market human memory enhancement in the form of a prosthetic implanted in the brain. He's already testing it attached to humans.

The prosthetic, which Berger has been working on for ten years, can function as an artificial hippocampus, the area in the brain associated with memory and spatial navigation.

Hippocampus (LIFE SCIENCE DATABASES)

The plan is for the device to convert short-term memory into long-term memory and potentially store it as the hippocampus does. His research has been encouraging so far.

Berger began by teaching a rabbit to associate an audio tone with a puff of air administered to the rabbit's face, causing it to blink. Electrodes attached to the rabbit allowed Berger to observe patterns of activity firing off in the rabbit's hippocampus. Berger refers to these patterns as a “space-time code" representing where the neurons are in the rabbit's brain at a specific moment. Berger watched them evolving as the rabbit learned to associate the tone and puff of air. He told Wired, “As the space-time code propagates into the different layers of the hippocampus, it's gradually changed into a different space-time code." Eventually, the tone alone was enough for the hippocampus to produce a recallable space-time code based on the latest incoming version to make the rabbit blink.

The manner in which the hippocampus was processing the rabbit's memory and producing a recallable space-time code became predictable enough to Berger that he was able to develop a mathematical model representing the process.

Berger then built an artificial rat hippocampus — his experimental prosthesis —to test his observations and model. By training rats to press a lever with electrodes monitoring their hippocampuses, Berger was able to acquire the corresponding space-time codes. Running that code through his mathematical model and sending it back to the rats' brains, his system was validated as the rats successfully pressed their levers. “They recall the correct code as if they've created it themselves. Now we're putting the memory back into the brain," Berger reports.

It's maybe the this last statement that's so intriguing. Does the brain have some kind of master memory index? Has it somehow integrated the artificial hippocampus's memories into the rats' directory? Will it also happen in humans?

Dustin Tyler, a professor of engineering at Case Western Reserve University, cautioned Wired, “All of these prosthetics interfacing with the brain have one fundamental challenge. There are billions of neurons in the brain and trillions of connections between them that make them all work together. Trying to find technology that will go into that mass of neurons and be able to connect with them on a reasonably high-resolution level is tricky."

Still, Bergen himself is optimistic, telling IEEE Spectrum, “We're testing it in humans now, and getting good initial results. We're going to go forward with the goal of commercializing this prosthesis."

What he envisions bringing to market based on his research is a brain prosthetic for people with memory problems. The tiny device would be implanted in the patient's own hippocampus from where it would stimulate the neurons responsible for turning short-term memories into long-term memories. He hopes it can help patients suffering from Alzheimer's, other forms of dementia, stroke victims and people whose brains have been injured.

Berger's business partner in this is tech entrepreneur Bryan Johnson. After selling his payment gateway Braintree to PayPal for $800 million, he started a venture capital fund, the OS Fund. Its web site states its mission: “The OS Fund invests in entrepreneurs working towards quantum-leap discoveries that promise to rewrite the operating systems of life." Johnson sees Berger's work as one such discovery, and formed kernel to support it, running the company himself with Berger as the company's Chief Science Officer.

(KERNEL)

Rats and monkeys — the prosthetic improved the memories of rhesus monkeys attached to their prefrontal cortex — are one thing. The greater number of neurons in human brains is a big issue that needs to be grappled before Berger's implant will work well for humans: It's difficult to gain a comprehensive view of what's going on with larger brains due to their greater number of neurons. (Rat brains have about 200 million neurons; humans have 86 billion.) Berger warns, “Our information will be biased based on the neurons we're able to record from," and he looks forward to tools that can capture broader swaths of data going forward. It's anticipated that they'll need to pack a greater number of electrodes into prostheses.

Human trials so far have been with in-patient epileptics with electrodes already in place for their epilepsy treatments. Berger's team has observed and recorded activity in the hippocampus during memory tests, and they've been encouragingly successful at enhancing patients' memories by stimulating neurons there. kernel will be funding additional human trials.

Archaeologists discover 3,200-year-old cheese in ancient Egyptian tomb

A team of archaeologists has discovered 3,200-year-old cheese after analyzing artifacts found in an ancient Egyptian tomb. It could be the oldest known cheese sample in the world.

The broken jar in which the white mass of cheese was found. (Photo: University of Catania and Cairo University)
Culture & Religion

Keep reading Show less

Modern society is as unequal as 14th century Europe

As bad as this sounds, a new essay suggests that we live in a surprisingly egalitarian age.

"Philosophy Presenting the Seven Liberal Arts to Boethius"

Getty Open Content
Politics & Current Affairs
  • A new essay depicts 700 years of economic inequality in Europe.
  • The only stretch of time more egalitarian than today was the period between 1350 to approximately the year 1700.
  • Data suggest that, without intervention, inequality does not decrease on its own.
Keep reading Show less

You are suffering from “tab overload”

Our love-hate relationship with browser tabs drives all of us crazy. There is a solution.

Photo by Anna Shvets from Pexels
Technology & Innovation
  • A new study suggests that tabs can cause people to be flustered as they try to keep track of every website.
  • The reason is that tabs are unable to properly organize information.
  • The researchers are plugging a browser extension that aims to fix the problem.
Keep reading Show less
Personal Growth

Epicurus and the atheist's guide to happiness

Seek pleasure and avoid pain. Why make it more complicated?

Quantcast