A historian identifies the worst year in human history

A Harvard professor's study discovers the worst year to be alive.

A historian identifies the worst year in human history

The Triumph of Death. 1562.

Credit: Pieter Bruegel the Elder. (Museo del Prado).
  • Harvard professor Michael McCormick argues the worst year to be alive was 536 AD.
  • The year was terrible due to cataclysmic eruptions that blocked out the sun and the spread of the plague.
  • 536 ushered in the coldest decade in thousands of years and started a century of economic devastation.

    The past year has been nothing but the worst in the lives of many people around the globe. A rampaging pandemic, dangerous political instability, weather catastrophes, and a profound change in lifestyle that most have never experienced or imagined.

    But was it the worst year ever?

    Nope. Not even close. In the eyes of the historian and archaeologist Michael McCormick, the absolute "worst year to be alive" was 536.

    Why was 536 so bad? You could certainly argue that 1918, the last year of World War I when the Spanish Flu killed up to 100 million people around the world, was a terrible year by all accounts. 1349 could also be considered on this morbid list as the year when the Black Death wiped out half of Europe, with up to 20 million dead from the plague. Most of the years of World War II could probably lay claim to the "worst year" title as well. But 536 was in a category of its own, argues the historian.

    It all began with an eruption...

    According to McCormick, Professor of Medieval History at Harvard University, 536 was the precursor year to one of the worst periods of human history. It featured a volcanic eruption early in the year that took place in Iceland, as established by a study of a Swiss glacier carried out by McCormick and the glaciologist Paul Mayewski from the Climate Change Institute of The University of Maine (UM) in Orono.

    The ash spewed out by the volcano likely led to a fog that brought an 18-month-long stretch of daytime darkness across Europe, the Middle East, and portions of Asia. As wrote the Byzantine historian Procopius, "For the sun gave forth its light without brightness, like the moon, during the whole year." He also recounted that it looked like the sun was always in eclipse.

    Cassiodorus, a Roman politician of that time, wrote that the sun had a "bluish" color, the moon had no luster, and "seasons seem to be all jumbled up together." What's even creepier, he described, "We marvel to see no shadows of our bodies at noon."

    ...that led to famine...

    The dark days also brought a period of coldness, with summer temperatures falling by 1.5° C. to 2.5° C. This started the coldest decade in the past 2300 years, reports Science, leading to the devastation of crops and worldwide hunger.

    ...and the fall of an empire

    In 541, the bubonic plague added considerably to the world's misery. Spreading from the Roman port of Pelusium in Egypt, the so-called Plague of Justinian caused the deaths of up to one half of the population of the eastern Roman Empire. This, in turn, sped up its eventual collapse, writes McCormick.

    Between the environmental cataclysms, with massive volcanic eruptions also in 540 and 547, and the devastation brought on by the plague, Europe was in for an economic downturn for nearly all of the next century, until 640 when silver mining gave it a boost.

    Was that the worst time in history?

    Of course, the absolute worst time in history depends on who you were and where you lived.

    Native Americans can easily point to 1520, when smallpox, brought over by the Spanish, killed millions of indigenous people. By 1600, up to 90 percent of the population of the Americas (about 55 million people) was wiped out by various European pathogens.

    Like all things, the grisly title of "worst year ever" comes down to historical perspective.


      U.S. Navy controls inventions that claim to change "fabric of reality"

      Inventions with revolutionary potential made by a mysterious aerospace engineer for the U.S. Navy come to light.

      U.S. Navy ships

      Credit: Getty Images
      Surprising Science
      • U.S. Navy holds patents for enigmatic inventions by aerospace engineer Dr. Salvatore Pais.
      • Pais came up with technology that can "engineer" reality, devising an ultrafast craft, a fusion reactor, and more.
      • While mostly theoretical at this point, the inventions could transform energy, space, and military sectors.
      Keep reading Show less

      Why so gassy? Mysterious methane detected on Saturn’s moon

      Scientists do not know what is causing the overabundance of the gas.

      An impression of NASA's Cassini spacecraft flying through a water plume on the surface of Saturn's moon Enceladus.

      Credit: NASA
      Surprising Science
      • A new study looked to understand the source of methane on Saturn's moon Enceladus.
      • The scientists used computer models with data from the Cassini spacecraft.
      • The explanation could lie in alien organisms or non-biological processes.
      Keep reading Show less

      CRISPR therapy cures first genetic disorder inside the body

      It marks a breakthrough in using gene editing to treat diseases.

      Credit: National Cancer Institute via Unsplash
      Technology & Innovation

      This article was originally published by our sister site, Freethink.

      For the first time, researchers appear to have effectively treated a genetic disorder by directly injecting a CRISPR therapy into patients' bloodstreams — overcoming one of the biggest hurdles to curing diseases with the gene editing technology.

      The therapy appears to be astonishingly effective, editing nearly every cell in the liver to stop a disease-causing mutation.

      The challenge: CRISPR gives us the ability to correct genetic mutations, and given that such mutations are responsible for more than 6,000 human diseases, the tech has the potential to dramatically improve human health.

      One way to use CRISPR to treat diseases is to remove affected cells from a patient, edit out the mutation in the lab, and place the cells back in the body to replicate — that's how one team functionally cured people with the blood disorder sickle cell anemia, editing and then infusing bone marrow cells.

      Bone marrow is a special case, though, and many mutations cause disease in organs that are harder to fix.

      Another option is to insert the CRISPR system itself into the body so that it can make edits directly in the affected organs (that's only been attempted once, in an ongoing study in which people had a CRISPR therapy injected into their eyes to treat a rare vision disorder).

      Injecting a CRISPR therapy right into the bloodstream has been a problem, though, because the therapy has to find the right cells to edit. An inherited mutation will be in the DNA of every cell of your body, but if it only causes disease in the liver, you don't want your therapy being used up in the pancreas or kidneys.

      A new CRISPR therapy: Now, researchers from Intellia Therapeutics and Regeneron Pharmaceuticals have demonstrated for the first time that a CRISPR therapy delivered into the bloodstream can travel to desired tissues to make edits.

      We can overcome one of the biggest challenges with applying CRISPR clinically.

      —JENNIFER DOUDNA

      "This is a major milestone for patients," Jennifer Doudna, co-developer of CRISPR, who wasn't involved in the trial, told NPR.

      "While these are early data, they show us that we can overcome one of the biggest challenges with applying CRISPR clinically so far, which is being able to deliver it systemically and get it to the right place," she continued.

      What they did: During a phase 1 clinical trial, Intellia researchers injected a CRISPR therapy dubbed NTLA-2001 into the bloodstreams of six people with a rare, potentially fatal genetic disorder called transthyretin amyloidosis.

      The livers of people with transthyretin amyloidosis produce a destructive protein, and the CRISPR therapy was designed to target the gene that makes the protein and halt its production. After just one injection of NTLA-2001, the three patients given a higher dose saw their levels of the protein drop by 80% to 96%.

      A better option: The CRISPR therapy produced only mild adverse effects and did lower the protein levels, but we don't know yet if the effect will be permanent. It'll also be a few months before we know if the therapy can alleviate the symptoms of transthyretin amyloidosis.

      This is a wonderful day for the future of gene-editing as a medicine.

      —FYODOR URNOV

      If everything goes as hoped, though, NTLA-2001 could one day offer a better treatment option for transthyretin amyloidosis than a currently approved medication, patisiran, which only reduces toxic protein levels by 81% and must be injected regularly.

      Looking ahead: Even more exciting than NTLA-2001's potential impact on transthyretin amyloidosis, though, is the knowledge that we may be able to use CRISPR injections to treat other genetic disorders that are difficult to target directly, such as heart or brain diseases.

      "This is a wonderful day for the future of gene-editing as a medicine," Fyodor Urnov, a UC Berkeley professor of genetics, who wasn't involved in the trial, told NPR. "We as a species are watching this remarkable new show called: our gene-edited future."

      Quantcast