Moral and economic lessons from Mario Kart

The design of a classic video game yields insights on how to address global poverty.

Moral and economic lessons from Mario Kart

Mario kart on giant screens

Credit: CARL DE SOUZA via Getty Images
  • A new essay compares the power-up system in Mario Kart to feedback loops in real-life systems.
  • Both try to provide targeted benefits to those who most need them.
  • While games are simpler than reality, Mario's example makes the real-life cases easier to understand.

    Poverty can be a self-sustaining cycle that might require an external influence to break it. A new paper published in Nature Sustainability and written by professor Andrew Bell of Boston University suggests that we could improve global anti-poverty and economic development systems by turning to an idea in a video game about a race car-driving Italian plumber.

    A primer on Mario Kart

    For those who have not played it, Mario Kart is a racing game starring Super Mario and other characters from the video game franchise that bears his name. Players race around tracks collecting power-ups that can directly help them, such as mushrooms that speed up their karts, or slow down other players, such as heat-seeking turtle shells that momentarily crash other karts.

    The game is well known for having a mechanism known as "rubber-banding." Racers in the front of the pack get wimpy power-ups, like banana peels to slip up other karts, while those toward the back get stronger ones, like golden mushrooms that provide extra long speed boosts. The effect of this is that those in the back are pushed towards the center, and those in front don't get any boosts that would make catching them impossible.

    If you're in last, you might get the help you need to make a last-minute break for the lead. If you're in first, you have to be on the lookout for these breakouts (and the ever-dreaded blue shells). The game remains competitive and fun.

    Rubber-banding: A moral and economic lesson from Mario Kart

    In the real world, we see rubber-banding used all the time. Welfare systems tend to provide more aid to those who need it than those who do not. Many of them are financed by progressive taxation, which is heavier on the well-off than the down-and-out. Some research suggests that these do work, as countries with lower levels of income inequality have higher social mobility levels.

    It is a little more difficult to use rubber-banding in real life than in a video game, of course. While in the game, it is easy to decide who is doing well and who is not, things can be a little more muddled in reality. Furthermore, while those in a racing game are necessarily antagonistic to each other, real systems often strive to improve conditions for everybody or to reach common goals.

    As Bell points out, rubber-banding can also be used to encourage sustainable, growth programs that help the poor other than welfare. They point out projects such as irrigation systems in Pakistan or Payments for Ecosystems Services (PES) schemes in Malawi, which utilize positive feedback loops to both provide aid to the poor and promote stable systems that benefit everyone.


    Rubber-banding feedback loops in different systems. Mario Kart (a), irrigation systems in Pakistan (b), and PES operations in Malawi (c) are shown. Links between one better-off (blue) and one worse-off (red) individual are highlighted. Feedback in Mario Kart (a), designed to balance the racers, imprAndrew Bell/ Nature Sustainability


    In the Malawi case, farmers were paid to practice conservation agriculture to reduce the amount of sediment from their farms flowing into a river. This immediately benefits hydroelectric producers and their customers but also provides real benefits to farmers in the long run as their soil doesn't erode. By providing an incentive to the farmers to conserve the soil, a virtuous cycle of conservation, soil improvement, and improved yields can begin.

    While this loop differs from the rubber-banding in Mario, the game's approach can help illustrate the benefits of rubber-banding in achieving a more equitable world.

    The task now, as Bell says in his paper, is to look at problems that exist and find out "what the golden mushroom might be."

    Golden blood: The rarest blood in the world

    We explore the history of blood types and how they are classified to find out what makes the Rh-null type important to science and dangerous for those who live with it.

    What is the rarest blood type?

    Abid Katib/Getty Images
    Surprising Science
    • Fewer than 50 people worldwide have 'golden blood' — or Rh-null.
    • Blood is considered Rh-null if it lacks all of the 61 possible antigens in the Rh system.
    • It's also very dangerous to live with this blood type, as so few people have it.
    Keep reading Show less

    How space debris created the world’s largest garbage dump

    Since 1957, the world's space agencies have been polluting the space above us with countless pieces of junk, threatening our technological infrastructure and ability to venture deeper into space.

    Space debris orbiting Earth

    Framestock via Adobe Stock
    Technology & Innovation
    • Space debris is any human-made object that's currently orbiting Earth.
    • When space debris collides with other space debris, it can create thousands more pieces of junk, a dangerous phenomenon known as the Kessler syndrome.
    • Radical solutions are being proposed to fix the problem, some of which just might work. (See the video embedded toward the end of the article.)
    Keep reading Show less

    Looking for something? A team at MIT develop a robot that sees through walls

    It uses radio waves to pinpoint items, even when they're hidden from view.

    TORU YAMANAKA/AFP via Getty Images
    Technology & Innovation
    In recent years, robots have gained artificial vision, touch, and even smell.
    Keep reading Show less
    Quantcast