The Universe Shouldn’t Exist, CERN Scientists Announce

BASE particle physicists have discovered a very precise way to examine antimatter.

The Veil Nebula.
The Veil Nebula. Credit: By Jschulman555 - Own work, Wikipedia Commons.

Thank your lucky stars you’re alive. It’s truly a miracle of nature. This has nothing to do with spirituality or religion and everything to do with science. Life itself may not be the miracle. Although we haven’t found it elsewhere yet, our galaxy alone is so replete with Earth-like planets that, mathematically speaking, one of them must hold life, even if it’s just the microbial variety. Intelligent life may be another matter.


What CERN scientists say as a result of their latest experiment is: the universe itself is a miracle, as it shouldn’t exist at all. This is of course taken in reference to the Big Bang theory. Though the prevailing one, it’s not the only theory to explain how all and everything came into being. Still, in this view, it all starts with the singularity.

According to the Big Bang, the universe began as a point the size of a grain of sand that was unimaginably hot, unfathomably dense, and packed tight with matter and energy. Then of course it exploded, sending its contents sailing out and eventually, forming the universe as we know it. There’s a few problems with this theory. For one, there’s the increasing rate of universal expansion, known as the Hubble Constant. According to the Big Bang, things should be slowing down, or even contracting. Dark energy is the conventional explanation, even though we can't prove it exists.

There’s another problem and here’s where the CERN scientists come in. The environment that produced the particles that make up the universe, as we know them now, should have created equal parts matter and antimatter. Yet, the latter is surprisingly rare. Not only that, a 50-50 split would’ve seen each particle uniting with its polar opposite, creating a burst of unimaginable energy and leaving nothing behind, save a vast howling void of a cosmos. And yet, here we are.


Particle physicists in the BASE collaboration at CERN have been investigating the matter-antimatter imbalance. Credit: Getty Images.

One theory is that matter and antimatter must in some way be radically different. But the latest CERN experiment does not find this is the case. According to the Standard Model of physics, a  manual for every known particle in the universe and how it operates, each type of atom has its polar opposite, its antiparticle, with the same mass, but with an opposite electrical charge.

In this study, CERN scientists tried to discern what fundamental difference such particles should have, to validate the existence of the cosmos. They came up empty. Physicists in the BASE collaboration at CERN, studied the magnetic properties of protons and antiprotons with uncanny precision. Some good news: the findings did support the Standard Model, as the particles behaved just as it predicts.

The matter-antimatter imbalance, as it’s called, is a popular topic among particle physicists these days, with many teams around the world looking into it. CERN researcher Christian Smorra was on the team who conducted the most recent experiment. He told Science Alert, "All of our observations find a complete symmetry between matter and antimatter, which is why the Universe should not actually exist."

He added, "An asymmetry must exist here somewhere but we simply do not understand where the difference is. What is the source of the symmetry break?" He and his colleagues' findings were published in the journal Nature.


When matter and antimatter particles collide, a burst of pure energy is the result. If these were perfectly balanced in the early days of the universe, how could the cosmos exist at all?  Credit: Getty Images.

Protons and antiprotons were the last holdout when it came to particles which could explain the matter-antimatter imbalance. Scientists from Mainz University in Germany devised a manner to assess the magnetism of a particle of antimatter that is 350 times more precise than the previously method. The readout was incredible, to nine places!

-2.7928473441 nuclear magnetons. A proton has the same level of magnetism, only it's positive. Although the study failed to explain our universe’s extreme prejudice towards matter, it did give us a far better understanding of an antiproton’s magnetism.

Antimatter doesn’t last long. As such, it needs to be contained. Researchers used two Penning traps, which are devices that retain antimatter particles using an electrical and a magnetic field. Stefan Ulmer, spokesperson for the BASE collaboration at CERN, said in the press release:

“The measurement of antiprotons was extremely difficult, and we had been working on it for ten years. The final breakthrough came with the revolutionary idea of performing the measurement with two particles. This result is the culmination of many years of continuous research and development, and the successful completion of one of the most difficult measurements ever performed in a Penning trap instrument.”


New plans in the works may unveil the secrets of the matter-antimatter imbalance. Pictured here: The Lagoon Nebula in Sagittarius. Credit: Hewholooks, Wikimedia Commons.

Up until now, scientists have probed the differences between particles and their opposites by comparing their electrical charge, magnetism, and mass. Next, this team plans to investigate them in terms of gravity, to see if a discrepancy exists there. Another international collaboration based at CERN, called ALPHA, will be studying what asymmetry, if any, exists between hydrogen and antihydrogen atoms. The BASE team meanwhile, also plans on further examining antiparticles magnetically.

Another important development at CERN, a new linear accelerator introduced at the facility in May, will allow the Large Hadron Collider (LHC) to reach greater luminosity by 2021. CERN Director General, Fabiola Gianotti, said at its unveiling, “This high-luminosity phase will considerably increase the potential of the LHC experiments for discovering new physics and measuring the properties of the Higgs particle in more detail.” Perhaps discoveries made here will help unravel the secret behind the matter-antimatter imbalance.

To learn more about antimatter, click here:

Fast superhighway through the Solar System discovered

Scientists find routes using arches of chaos that can lead to much faster space travel.

Arches of chaos in space manifolds.

Courtesy: Nataša Todorović, Di Wu and Aaron Rosengren/Science Advances
Surprising Science
  • Researchers discovered a route through the Solar System that can allow for much faster spacecraft travel.
  • The path takes advantage of "arches of chaos" within space manifolds.
  • The scientists think this "celestial superhighway" can help humans get to the far reaches of the galaxy.
Keep reading Show less

Zoo ethics: free-range prisons or centers for global conservation?

The ethical debate over zoos is going to grow louder. There might be a solution that involves robots.

Credit: Nikolay Tchaouchev via Unsplash
Politics & Current Affairs
  • Zoos present a dilemma. On the one hand, they benefit conservation and research; on the other hand, placing animals (particularly intelligent ones) in captivity is ethically questionable.
  • The more we learn about animals — especially how advanced or intelligent they are — the louder the debate will grow surrounding their captivity.
  • Could zoos of the future feature realistic robots in place of animals?
Keep reading Show less

Hack your brain for better problem solving

Tips from neuroscience and psychology can make you an expert thinker.

Credit: Olav Ahrens Røtne via Unsplash
Mind & Brain

This article was originally published on Big Think Edge.

Problem-solving skills are in demand. Every job posting lists them under must-have qualifications, and every job candidate claims to possess them, par excellence. Young entrepreneurs make solutions to social and global problems the heart of their mission statements, while parents and teachers push for curricula that encourage critical-thinking methods beyond solving for x.

It's ironic then that we continue to cultivate habits that stunt our ability to solve problems. Take, for example, the modern expectation to be "always on." We push ourselves to always be working, always be producing, always be parenting, always be promoting, always be socializing, always be in the know, always be available, always be doing. It's too much, and when things are always on all the time, we deplete the mental resources we need to truly engage with challenges.

If we're serious about solving problems, at work and in our personal lives, then we need to become more adept at tuning out so we can hone in.

Solve problems with others (occasionally)

A side effect of being always on is that we are rarely alone. We're connected through the ceaseless chirps of friends texting, social media buzzing, and colleagues pinging us for advice everywhere we go. In some ways, this is a boon. Modern technologies mediate near endless opportunities for collective learning and social problem-solving. Yet, such cooperation has its limits according to a 2018 study out of Harvard Business School.

In the study, participants were divided into three group types and asked to solve traveling salesman problems. The first group type had to work on the problems individually. The second group type exchanged notes after every round of problem-solving while the third collaborated after every three rounds.

The researchers found that lone problem-solvers invented a diverse range of potential solutions. However, their solutions varied wildly in quality, with some being true light bulb moments and others burnt-out duds. Conversely, the always-on group took advantage of their collective learning to tackle more complex problems more effectively. But social influence often led these groups to prematurely converge around a single idea and abandon potentially brilliant outliers.

It was the intermittent collaborators who landed on the Goldilocks strategy. By interacting less frequently, individual group members had more time to nurture their ideas so the best could shine. But when they gathered together, the group managed to improve the overall quality of their solutions thanks to collective learning.

In presenting their work, the study's authors question the value of always-on culture—especially our submissiveness to intrusions. "As we replace those sorts of intermittent cycles with always-on technologies, we might be diminishing our capacity to solve problems well," Ethan Bernstein, an associate professor at Harvard Business School and one of the study's authors, said in a press release.

These findings suggest we should schedule time to ruminate with our inner geniuses and consult the wisdom of the crowd. Rather than dividing our day between productivity output and group problem-solving sessions, we must also create space to focus on problems in isolation. This strategy provides the best of both worlds. It allows us to formulate our ideas before social pressure can push us to abandon them. But it doesn't preclude the group knowledge required to refine those ideas.

And the more distractions you can block out or turn off, the more working memory you'll have to direct at the problem.

A problem-solving booster

The next step is to dedicate time to not dealing with problems. Counterintuitive as it may seem, setting a troublesome task aside and letting your subconscious take a crack at it improves your conscious efforts later.

How should we fill these down hours? That's up to you, but research has shown time and again that healthier habits produce hardier minds. This is especially true regarding executive functions—a catchall term that includes a person's ability to self-control, meet goals, think flexibly, and, yes, solve problems.

"Exercisers outperform couch potatoes in tests that measure long-term memory, reasoning, attention, problem-solving, even so-called fluid-intelligence tasks. These tasks test the ability to reason quickly and think abstractly, improvising off previously learned material to solve a new problem. Essentially, exercise improves a whole host of abilities prized in the classroom and at work," writes John Medina, a developmental molecular biologist at the University of Washington.

One such study, published in the Frontiers in Neuroscience, analyzed data collected from more than 4,000 British adults. After controlling for variables, it found a bidirectional relationship between exercise and higher levels of executive function over time. Another study, this one published in the Frontiers in Aging Neuroscience, compared fitness data from 128 adults with brain scans taken as they were dual-tasking. Its findings showed regular exercisers sported more active executive regions.

Research also demonstrates a link between problem-solving, healthy diets, and proper sleep habits. Taken altogether, these lifestyle choices also help people manage their stress—which is known to impair problem-solving and creativity.

Of course, it can be difficult to untangle the complex relationship between cause and effect. Do people with healthy life habits naturally enjoy strong executive functions? Or do those habits bolster their mental fitness throughout their lives?

That's not an easy question to answer, but the Frontiers in Neuroscience study researchers hypothesize that it's a positive feedback loop. They posit that good sleep, nutritious food, and regular exercise fortify our executive functions. In turn, more potent executive decisions invigorate healthier life choices. And those healthy life choices—you see where this is going.

And while life choices are ultimately up to individuals, organizations have a supportive role to play. They can foster cultures that protect off-hours for relaxing, incentivize healthier habits with PTO, and prompt workers to take time for exercise beyond the usual keyboard calisthenics.

Nor would such initiatives be entirely selfless. They come with the added benefit of boosting a workforce's collective problem-solving capabilities.

Live and learn and learn some more

Another advantage of tuning out is the advantage to pursue life-long learning opportunities. People who engage in creative or problem-solving activities in their downtime—think playing music, puzzles, and even board games—show improved executive functions and mental acuity as they age. In other words, by learning to enjoy the act of problem-solving, you may enhance your ability to do so.

Similarly, lifelong learners are often interdisciplinary thinkers. By diving into various subjects, they can come to understand the nuances of different skills and bodies of knowledge to see when ideas from one field may provide a solution to a problem in another. That doesn't mean lifelong learners must become experts in every discipline. On the contrary, they are far more likely to understand where the limits of their knowledge lie. But those self-perceived horizons can also provide insight into where collaboration is necessary and when to follow someone else's lead.

In this way, lifelong learning can be key to problem-solving in both business and our personal lives. It pushes us toward self-improvement, gives us an understanding of how things work, hints at what's possible, and, above all, gives us permission to tune out and focus on what matters.

Cultivate lifelong learning at your organization with lessons 'For Business' from Big Think Edge. At Edge, more than 350 experts, academics, and entrepreneurs come together to teach essential skills in career development and lifelong learning. Heighten your problem-solving aptitude with lessons such as:

  • Make Room for Innovation: Key Characteristics of Innovative Companies, with Lisa Bodell, Founder and CEO, FutureThink, and Author, Why Simple Wins
  • Use Design Thinking: An Alternative Approach to Tackling the World's Greatest Problems, with Tim Brown, CEO and President, IDEO
  • The Power of Onlyness: Give Your People Permission to Co-Create the Future, with Nilofer Merchant, Marketing Expert and Author, The Power of Onlyness
  • How to Build a Talent-First Organization: Put People Before Numbers, with Ram Charan, Business Consultant
  • The Science of Successful Things: Case Studies in Product Hits and Flops, with Derek Thompson, Senior Editor, The Atlantic, and Author, Hit Makers

Request a demo today!

Culture & Religion

How AI learned to paint like Rembrandt

The Rijksmuseum employed an AI to repaint lost parts of Rembrandt's "The Night Watch." Here's how they did it.

Quantcast