Should you skip breakfast? It depends on your weight

Knowing how fat responds to when we eat could lead to better weight loss programs.

There are all kinds of new diets out there where one skips meals, intermittently fasts, or only eats between certain hours. These have been hailed for weight loss. But does it work for everyone? The most common meal to omit is breakfast. Yet, the research conducted so far has conflicting results as to whether or not this is a good idea.


One study found that skipping breakfast increases the risk of atherosclerosis, or the “hardening of the arteries.” This is one of the hallmarks of heart disease, as it can lead to heart attack or stroke. Another study on teenage girls ages 11-15, found that skipping breakfast had no ill health effects and in fact had one benefit, consuming fewer calories. Then there’s a recent study published in the Journal of Nutrition, which found that eating breakfast helped people better control their BMI.

Scientists at the University of Bath in the UK, their heads spinning from all these conflicting reports, decided to look into the matter themselves. They wanted to find out exactly how skipping breakfast influenced weight loss, and what metabolic mechanisms are at play. What they found was more nuanced than previous studies—skipping breakfast can be healthy for thin people, but isn’t so great for the obese. Their findings were published in the Journal of Physiology.

While lean people saw a weight loss benefit from skipping breakfast, the obese did not. Getty Images.

Javier Gonzalez, Ph.D. led the study. He and his team recruited 49 individuals. 29 were lean and 20 obese, which was determined by each person’s BMI. A mix of thin and obese volunteers were put into one of two groups. The first consumed breakfast every day before noon and the second skipped eating until noon. The study went on for six weeks. Researchers also examined participants’ heart health, metabolic health, body fat distribution, and appetite responses. In addition, they monitored 44 genes responsible for insulin sensitivity.

Each day of the study, participants donated two subcutaneous abdominal adipose tissue (SCAT) samples. This took place before and after either morning fasting or breakfast consumption. SCAT is a type of abdominal fat. The samples were evaluated for metabolic mechanisms. Gonzalez said, "[B]y better understanding how fat responds to what and when we eat, we can more precisely target those mechanisms.”

For thin people, skipping breakfast actually helps activate certain genes which burn fat and boost the metabolism. But for the obese, this wasn’t the case. Skipping breakfast actually had a negative effect on their health. Obese volunteers who skipped breakfast absorbed much less glucose than those who were lean, meaning their fat cells may have become more insulin-resistant.

Gonzalez and colleagues believe this might be a protective mechanism, helping fat cells avoid taking in more glucose than needed and storing it as fat. One limitation of the study was the type of breakfast participants consumed. It was high-carb. Would a high protein breakfast say, give the same response? Gonzalez says future studies will look at what impact exercise and eating breakfast has on fat storage.

To learn more about diet and nutrition, click here:

'Upstreamism': Your zip code affects your health as much as genetics

Upstreamism advocate Rishi Manchanda calls us to understand health not as a "personal responsibility" but a "common good."

Sponsored by Northwell Health
  • Upstreamism tasks health care professionals to combat unhealthy social and cultural influences that exist outside — or upstream — of medical facilities.
  • Patients from low-income neighborhoods are most at risk of negative health impacts.
  • Thankfully, health care professionals are not alone. Upstreamism is increasingly part of our cultural consciousness.
Keep reading Show less

Elizabeth Warren's plan to forgive student loan debt could lead to an economic boom

A plan to forgive almost a trillion dollars in debt would solve the student loan debt crisis, but can it work?

Photo credit: Drew Angerer / Getty Images
Politics & Current Affairs
  • Sen. Elizabeth Warren has just proposed a bold education reform plan that would forgive billions in student debt.
  • The plan would forgive the debt held by more than 30 million Americans.
  • The debt forgiveness program is one part of a larger program to make higher education more accessible.
Keep reading Show less

Yale scientists restore brain function to 32 clinically dead pigs

Researchers hope the technology will further our understanding of the brain, but lawmakers may not be ready for the ethical challenges.

Still from John Stephenson's 1999 rendition of Animal Farm.
Surprising Science
  • Researchers at the Yale School of Medicine successfully restored some functions to pig brains that had been dead for hours.
  • They hope the technology will advance our understanding of the brain, potentially developing new treatments for debilitating diseases and disorders.
  • The research raises many ethical questions and puts to the test our current understanding of death.

The image of an undead brain coming back to live again is the stuff of science fiction. Not just any science fiction, specifically B-grade sci fi. What instantly springs to mind is the black-and-white horrors of films like Fiend Without a Face. Bad acting. Plastic monstrosities. Visible strings. And a spinal cord that, for some reason, is also a tentacle?

But like any good science fiction, it's only a matter of time before some manner of it seeps into our reality. This week's Nature published the findings of researchers who managed to restore function to pigs' brains that were clinically dead. At least, what we once thought of as dead.

What's dead may never die, it seems

The researchers did not hail from House Greyjoy — "What is dead may never die" — but came largely from the Yale School of Medicine. They connected 32 pig brains to a system called BrainEx. BrainEx is an artificial perfusion system — that is, a system that takes over the functions normally regulated by the organ. The pigs had been killed four hours earlier at a U.S. Department of Agriculture slaughterhouse; their brains completely removed from the skulls.

BrainEx pumped an experiment solution into the brain that essentially mimic blood flow. It brought oxygen and nutrients to the tissues, giving brain cells the resources to begin many normal functions. The cells began consuming and metabolizing sugars. The brains' immune systems kicked in. Neuron samples could carry an electrical signal. Some brain cells even responded to drugs.

The researchers have managed to keep some brains alive for up to 36 hours, and currently do not know if BrainEx can have sustained the brains longer. "It is conceivable we are just preventing the inevitable, and the brain won't be able to recover," said Nenad Sestan, Yale neuroscientist and the lead researcher.

As a control, other brains received either a fake solution or no solution at all. None revived brain activity and deteriorated as normal.

The researchers hope the technology can enhance our ability to study the brain and its cellular functions. One of the main avenues of such studies would be brain disorders and diseases. This could point the way to developing new of treatments for the likes of brain injuries, Alzheimer's, Huntington's, and neurodegenerative conditions.

"This is an extraordinary and very promising breakthrough for neuroscience. It immediately offers a much better model for studying the human brain, which is extraordinarily important, given the vast amount of human suffering from diseases of the mind [and] brain," Nita Farahany, the bioethicists at the Duke University School of Law who wrote the study's commentary, told National Geographic.

An ethical gray matter

Before anyone gets an Island of Dr. Moreau vibe, it's worth noting that the brains did not approach neural activity anywhere near consciousness.

The BrainEx solution contained chemicals that prevented neurons from firing. To be extra cautious, the researchers also monitored the brains for any such activity and were prepared to administer an anesthetic should they have seen signs of consciousness.

Even so, the research signals a massive debate to come regarding medical ethics and our definition of death.

Most countries define death, clinically speaking, as the irreversible loss of brain or circulatory function. This definition was already at odds with some folk- and value-centric understandings, but where do we go if it becomes possible to reverse clinical death with artificial perfusion?

"This is wild," Jonathan Moreno, a bioethicist at the University of Pennsylvania, told the New York Times. "If ever there was an issue that merited big public deliberation on the ethics of science and medicine, this is one."

One possible consequence involves organ donations. Some European countries require emergency responders to use a process that preserves organs when they cannot resuscitate a person. They continue to pump blood throughout the body, but use a "thoracic aortic occlusion balloon" to prevent that blood from reaching the brain.

The system is already controversial because it raises concerns about what caused the patient's death. But what happens when brain death becomes readily reversible? Stuart Younger, a bioethicist at Case Western Reserve University, told Nature that if BrainEx were to become widely available, it could shrink the pool of eligible donors.

"There's a potential conflict here between the interests of potential donors — who might not even be donors — and people who are waiting for organs," he said.

It will be a while before such experiments go anywhere near human subjects. A more immediate ethical question relates to how such experiments harm animal subjects.

Ethical review boards evaluate research protocols and can reject any that causes undue pain, suffering, or distress. Since dead animals feel no pain, suffer no trauma, they are typically approved as subjects. But how do such boards make a judgement regarding the suffering of a "cellularly active" brain? The distress of a partially alive brain?

The dilemma is unprecedented.

Setting new boundaries

Another science fiction story that comes to mind when discussing this story is, of course, Frankenstein. As Farahany told National Geographic: "It is definitely has [sic] a good science-fiction element to it, and it is restoring cellular function where we previously thought impossible. But to have Frankenstein, you need some degree of consciousness, some 'there' there. [The researchers] did not recover any form of consciousness in this study, and it is still unclear if we ever could. But we are one step closer to that possibility."

She's right. The researchers undertook their research for the betterment of humanity, and we may one day reap some unimaginable medical benefits from it. The ethical questions, however, remain as unsettling as the stories they remind us of.

Supreme Court to hear 3 cases on LGBT workplace discrimination

In most states, LGBTQ Americans have no legal protections against discrimination in the workplace.

(Photo by Andres Pantoja/SOPA Images/LightRocket via Getty Images)
Politics & Current Affairs
  • The Supreme Court will decide whether the Civil Rights Act of 1964 also applies to gay and transgender people.
  • The court, which currently has a probable conservative majority, will likely decide on the cases in 2020.
  • Only 21 states and the District of Columbia have passed laws effectively extending the Civil Rights of 1964 to gay and transgender people.
Keep reading Show less