Low gravity may hold the key to a healthy heart

The impact of this research could help save millions of lives each year. Only thing is, it has to be done from space.

André Kuipers on the International Space Station.
André Kuipers on the International Space Station. Credit: André Kuipers, Twitter.

Most of us who are interested in how living in space affects the human body, are familiar with the downsides. For instance, you can lose up to 20% of your bone mass by spending six months or more in a microgravity environment, not to mention a substantial loss of muscle mass. This is why astronauts on the international space station are constantly working out, to try and preserve those tissues. A far more worrisome aspect is that without the benefit of the Earth’s magnetic field, one is constantly exposed to cosmic radiation, which can increase the risk of cancer and Alzheimer’s. There are other problems too like difficulty sleeping, blood rushing to the face and away from the limbs, immune system deficiencies, and much more.


One of the biggest impacts might be to cardiovascular health. In space, veins and arteries grow thicker and become less elastic, which could increase the risk of heart disease. What’s really fascinating is that this environment, inherently dangerous to the cardiovascular system, could hold the secret to healing it after a cardiac event. Researchers from Loma Linda University in California just published a fascinating paper on this, which was published in the journal Stem Cells and Development.

The study reveals that a microgravity environment helps speed up the production of progenitor heart cells—the precursor to stem cells. On Earth, these are slow growing, which makes stem cell therapy difficult to achieve on a large scale. Scientists are looking into how to boost production of progenitor cells to have them at the ready, in order to repair patients’ hearts after a heart attack.

The scientists in this study wanted to know how a low gravity environment impacts these cells’ development. They focused particularly on whether progenitor cells or the stem cells they turn into, can be grown in a microgravity environment.

A congregation of human stem cells less than 1 mm wide. Credit: Getty Images.

Remember that stem cells can become any type of cell in the body. Previous research on embryonic mouse stem cells found that they were able to form cardiac muscle cells more quickly after being exposed to a microgravity environment. Would human neonatal cardiovascular progenitor cells (CPC) operate the same way?

To find out, researchers cultured CPCs in microgravity aboard the International Space Station. The cells spent 6-7 days in simulated low gravity and another 12 days in microgravity. What scientists found was that the cells expressed genes differently, as if they were actually in an earlier stage of development. The CPCs also expressed changes in calcium signaling pathways. The scientists took these cells back to their lab on Earth and further manipulated this signaling.

What they found was that this change in calcium signaling could be manipulated in a way that would speed up cardiac therapies. After a heart attack, doctors can place CPCs in key areas in the heart to initiate repairs. But grafts don’t always take. So researchers want to find ways to make transplantation more successful more often. One way to do so is to have more of them on-hand, in case the initial graft doesn’t take.

The International Space Station. Could this and other installations like it become harvesting facilities for cardiovascular progenitor cells? Credit: Getty Images.

Based on these experiments, cultivating cardiac progenitor cells in microgravity may be a worthwhile endeavor in the near future, especially since the second “space race” is heating up. For now, this study highlights underlying mechanisms which scientists may use to better understand these cells and how to use them for clinical purposes.

Graham C. Parker, Ph.D. —the Editor-in-Chief of Stem Cell and Development, commented on the findings. He wrote, "This paper provides an important proof of concept for combining space-based and ground-based experimental design and informs cardiac therapeutic development both for spaceflight and here on Earth."

To learn more about cultivating stem cells in space, watch this:

There are 5 eras in the universe's lifecycle. Right now, we're in the second era.

Astronomers find these five chapters to be a handy way of conceiving the universe's incredibly long lifespan.

Image based on logarithmic maps of the Universe put together by Princeton University researchers, and images produced by NASA based on observations made by their telescopes and roving spacecraft

Image source: Pablo Carlos Budassi
Surprising Science
  • We're in the middle, or thereabouts, of the universe's Stelliferous era.
  • If you think there's a lot going on out there now, the first era's drama makes things these days look pretty calm.
  • Scientists attempt to understand the past and present by bringing together the last couple of centuries' major schools of thought.
Keep reading Show less

Dark energy: The apocalyptic wild card of the universe

Dr. Katie Mack explains what dark energy is and two ways it could one day destroy the universe.

Videos
  • The universe is expanding faster and faster. Whether this acceleration will end in a Big Rip or will reverse and contract into a Big Crunch is not yet understood, and neither is the invisible force causing that expansion: dark energy.
  • Physicist Dr. Katie Mack explains the difference between dark matter, dark energy, and phantom dark energy, and shares what scientists think the mysterious force is, its effect on space, and how, billions of years from now, it could cause peak cosmic destruction.
  • The Big Rip seems more probable than a Big Crunch at this point in time, but scientists still have much to learn before they can determine the ultimate fate of the universe. "If we figure out what [dark energy is] doing, if we figure out what it's made of, how it's going to change in the future, then we will have a much better idea for how the universe will end," says Mack.
Keep reading Show less

Astrophysicists find unique "hot Jupiter" planet without clouds

A unique exoplanet without clouds or haze was found by astrophysicists from Harvard and Smithsonian.

Illustration of WASP-62b, the Jupiter-like planet without clouds or haze in its atmosphere.

Credit: M. Weiss/Center for Astrophysics | Harvard & Smithsonian
Surprising Science
  • Astronomers from Harvard and Smithsonian find a very rare "hot Jupiter" exoplanet without clouds or haze.
  • Such planets were formed differently from others and offer unique research opportunities.
  • Only one other such exoplanet was found previously.
Keep reading Show less
Scroll down to load more…
Quantcast