Hints of the 4th dimension have been detected by physicists

What would it be like to experience the 4th dimension?

Physicists have understood at least theoretically, that there may be higher dimensions, besides our normal three. The first clue came in 1905 when Einstein developed his theory of special relativity. Of course, by dimensions we’re talking about length, width, and height. Generally speaking, when we talk about a fourth dimension, it’s considered space-time. But here, physicists mean a spatial dimension beyond the normal three, not a parallel universe, as such dimensions are mistaken for in popular sci-fi shows.


Even if there are other dimensions somewhere out there in our universe or in others, should we travel to a place which includes them, scientists aren’t so sure we could even experience them. Our brains may be incapable. Mathematically, we can describe the 4th dimension but we may never experience it in the physical realm.

Even so, that hasn’t stopped us from looking for evidence of higher dimensions. One model which helps us conceive of it easier and understand it better is a tesseract or hypercube. This is a cube within a cube. Though a helpful metaphor, it doesn’t actually exist in the real world. So how might scientists actually detect the 4th dimension? Two separate research teams, one in the US and one in Europe have completed dual experiments, to do just that.

Both of these were 2D experiments which hinted at a 4D world, utilizing a phenomenon known as the quantum Hall effect. The Hall Effect is when you have an electrically conducive material, say a sheet of metal or a wire, which you pass current through. The electrons move in one direction. Place a magnetic field perpendicular to the material and instead of electrons get diverted to the left or right, by what’s called the Lorentz force.

Find a good explanation of the Hall effect and quantum Hall effect here:

The result of the Hall effect is that electrons get stuck within a 2D system. They can then only move in two directions. The quantum Hall effect occurs at the quantum level, either when the material is at very low temperatures, or is subject to a very strong magnetic field. Here, an additional thing happens. The voltage doesn’t increase normally but instead, jumps up in steps. By restricting electrons with the quantum Hall effect, you can also measure them.

Follow the math and you’ll realize that the quantum Hall effect is also detectable within a 4D system. Professor Mikael Rechtsman of Penn State University was part of the American team. He told Gizmodo, "Physically, we don't have a 4D spatial system, but we can access 4D quantum Hall physics using this lower-dimensional system because the higher-dimensional system is coded in the complexity of the structure."

We ourselves as 3D objects cast a 2D shadow. A 4D object should then cast a 3D shadow.  We can learn something about a 3D object by studying its shadow. So it stands to reason that we could also gain knowledge about a 4D object from its 3D shadow. Both teams in these experiments did something of that kind. They used lasers to catch a glimpse of the 4th dimension. The results of each experiment were published in two reports, both in the journal Nature.

In the European experiment, scientists took the element rubidium and cooled it down to absolute zero. Then, they trapped atoms there within a lattice of lasers, creating what researchers describe as, "an egg-carton-like crystal of light." Next, they introduced more lasers to excite the atoms, creating what’s known as a quantum “charge pump.” Though atoms themselves don’t have a charge, here they simulated the transport of electrical charges. Subtle variations in the atoms’ movements coincided with how the quantum Hall effect would play out in the 4th dimension. 

To hear an explanation of the 4th dimension using a video game, click here:

In the US experiment, glass was used to control the flow of laser light into the system. This was basically a rectangular glass prism with a series of channels within it, which looked like a number of fiber optic cables stuck inside, running the length of the box and terminating at both ends. Researchers were able to manipulate the light using these channels as wave guides, in order to make it act like an electric field. When light jumped from opposite edges into the corners, researchers knew they had observed the quantum Hall effect, as it would occur in a 4D system.

Scientists at ETH Zürich, a university in Switzerland, conducted the European experiment. Researcher Oded Zilberberg was among them. He said that before these experiments, observing actions occurring in the 4th dimension seemed more like science fiction.

“Right now, those experiments are still far from any useful application,” he said. Yet, physics in the 4th dimension could be influencing our 3D world. As for applications Rechtsman said, “Maybe we can come up with new physics in the higher dimension and then design devices that take advantage the higher-dimensional physics in lower dimensions.”

In these experiments, the photons and electrons didn’t interact. In the next, scientists believe it might be interesting to see what happens when they do. Rechtsman claims we could gain a better understanding of the phases of matter by investigating the 4th dimension. Say we get a healthy grasp of it, is that the end? Certainly not. Theoretical physicists believe there may as many as 11 dimensions.

To learn about the 4th dimension from Carl Sagan himself, click here:

Will China’s green energy tipping point come too late?

Pay attention to the decisions made by the provinces.

Surprising Science
  • China leads the world in numerous green energy categories.
  • CO2 emissions in the country totaling more than all coal emissions in the U.S. have recently emerged.
  • This seems to be an administrative-induced blip on the way towards a green energy tipping point.
Keep reading Show less

Got a question for a real NASA astronomer? Ask it here!

NASA astronomer Michelle Thaller is coming back to Big Think to answer YOUR questions! Here's all you need to know to submit your science-related inquiries.

Surprising Science

Big Think's amazing audience has responded so well to our videos from NASA astronomer and Assistant Director for Science Communication Michelle Thaller that we couldn't wait to bring her back for more!

And this time, she's ready to tackle any questions you're willing to throw at her, like, "How big is the Universe?", "Am I really made of stars?" or, "How long until Elon Musk starts a colony on Mars?"

All you have to do is submit your questions to the form below, and we'll use them for an upcoming Q+A session with Michelle. You know what to do, Big Thinkers!

Keep reading Show less

5 communication pitfalls that are preventing people from really hearing what you're trying to say

If you want to be a better and more passionate communicator, these tips are important.

Photo by CloudVisual on Unsplash
popular

If you identify as being a socially conscious person in today's age of outrage, you've likely experienced the bewildering sensation when a conversation that was once harmless, suddenly doesn't feel that way anymore. Perhaps you're out for a quick bite with family, friends, or coworkers when the conversation takes a turn. Someone's said something that doesn't sit right with you, and you're unsure of how to respond. Navigating social situations like this is inherently stressful.

Below are five expert-approved tips on how to maintain your cool and effectively communicate.

Keep reading Show less

Take the Big Think survey for a chance to win :)

Calling all big thinkers!

  • Tell us a little bit about where you find Big Think's videos, articles, and podcasts.
  • Be entered for a chance to win 1 of 3 Amazon gift cards each worth $100.
  • All survey information is anonymous and will be used only for this survey.
Keep reading Show less
(Photo: ANGELA WEISS/AFP/Getty Images)
Culture & Religion
  • The next Mega Millions drawing is scheduled for Oct. 23 at 11 pm E.T.
  • The odds of any one ticket winning are about 1 in 300 million.
  • This might be a record-setting jackpot, but that doesn't mean you have a better chance of winning.
Keep reading Show less

The value of owning more books than you can read

Or how I learned to stop worrying and love my tsundoku.

(Photo from Wikimedia)
Personal Growth
  • Many readers buy books with every intention of reading them only to let them linger on the shelf.
  • Statistician Nassim Nicholas Taleb believes surrounding ourselves with unread books enriches our lives as they remind us of all we don't know.
  • The Japanese call this practice tsundoku, and it may provide lasting benefits.
Keep reading Show less

How to raise a non-materialistic kid

Money makes the world go 'round. Unfortunately, it can make both children and adults into materialists.

Robert Collins / Unsplash
Personal Growth
  • Keeping a gratitude journal caused children to donate 60 percent more to charitable causes.
  • Other methods suggested by researchers include daily gratitude reflection, gratitude posters, and keeping a "gratitude jar."
  • Materialism has been shown to increase anxiety and depression and promote selfish attitudes and behavior.
Keep reading Show less

Elon Musk says Boring Company tunnel opens Dec. 10

The Boring Company plans to offer free rides in its prototype tunnel in Hawthorne, California in December.

Image: Getty Images/Claudia Soraya
Technology & Innovation
  • The prototype tunnel is about 2 miles long and contains electric skates that travel at top speeds of around 150 mph.
  • This is the first tunnel from the company that will be open to the public.
  • If successful, the prototype could help the company receive regulatory approval for much bigger projects in L.A. and beyond.
Keep reading Show less