Cosmic Riddle: How Can This Star Be Older Than the Universe?

Astronomers have gotten good at dating stars. But this one has them stumped. 

 

It’s drilled into us since elementary school... the Big Bang created everything. Or did it? There’s actually one celestial body, the Methuselah star (HD 140283) which has astronomers stumped. It’s thought to be 14.5 billion years old. But the Big Bang occurred 13.8 billion years ago.


Astronomers determine a star’s age by its physical properties. Temperature, luminosity, and radiance are all studied closely in order to properly date one. A star’s lifespan however depends on how much metal and mass it contains. Older stars will have low mass and low metallicity.

“Metal” here is considered the byproducts of a fusion reaction in the star’s core. Some of the earliest stars had no metals in them. But as stars die, their remains become part of new stars, and those adopt the metals created by their predecessors.  

So is this star going to cause a paradigm shift in how we view the cosmos? Probably not. It’s unlikely that the universe is 14.5 billion years old. How do scientists know the universe’s age anyway?

Star HD 140283 could be older than the universe itself. ESA/Hubble.

One way to know is to measure the temperature and pressure of the cosmic microwave background. This is a layer of radiation inhabiting deep space thought to be the afterglow from the Big Bang. It’s the most distant light we’re able to detect. The Hubble Constant or the expansion rate of the universe also helps scientists date a star.  

Another way is to study stars and star clusters. We know how stars are formed, how their fusion reactions start, their efficiency level, and how they die. It can be difficult however when a star is in midlife to define how old it actually is. Understanding its composition can help.

Astronomers can get a handle on a star’s age by measuring how much carbon, oxygen, and iron it contains. The spectrum of starlight contains dark lines called Fraunhofer lines. These are formed by different elements in the star interacting with its light. But studying these lines, astronomers can determine a star’s composition.

The lifecycle of a star. NASA Goddard Space Flight Center.

Other methods include looking at star formation, star cluster formation, and the creation and development of galaxies. Most scientists say our calculations for the age of the universe, with all these considerations taken together is pretty solid, give or take 100 million years.

That’s why it was so shocking that previous research had Methuselah at up to 16 billion years old. A team recently reevaluated the star and updated its age, which they say is compatible with our current cosmological model. In this study, lead author Howard Bond and colleagues looked at the star’s brightness, distance, structure, and composition, to reevaluate the star's age. Bond is a professor in the Astronomy & Astrophysics department at the University of Pennsylvania.

Methuselah is a low metallicity subgiant on its way to becoming a red giant. This is when it’s exhausted its hydrogen core. It’ll expand for a time, then shrink to a white dwarf, or else end in supernova.

Bond and his team used the Hubble space telescope to get a better understanding of the distance of star HD 140283, in conjunction with the principle of parallax. This is the experience of things looking as if they cross at a distance, when in actuality they remain parallel. Think of when you look down train tracks. The tracks seem to meet at the vanishing point.

The Pleiades star cluster. ESA/Hubble.

Bond and colleagues thought they could get a more accurate measurement of distance by understanding the variance between the position of Earth’s orbit and Hubble’s. They were right. Methuselah is 190.1 light-years away, researchers found. It’s moving at a high rate of speed, 800,000 mph (1.3 million km/h) and has an unusually long orbit. These may be symptoms of its decline.

Getting a better grip on the star’s distance, they were able to calculate its brightness. From there, they could figure the star’s age. Bond said there’s a level of uncertainty, which could add or subtract 800 million years. A subtraction would make it just a tad younger than the universe itself. The team also tried to get a better understanding of the star’s burn rate, which could also help date it.

Bond and colleagues believe the star has a high ration of oxygen-to-iron. This might also make it younger than first predicted. Researchers are pretty sure further calculations will bring the star’s age down some more. The results of their study were published in the journal Solar and Stellar Astrophysics.

To learn more about this cosmological riddle, click here: 

LinkedIn meets Tinder in this mindful networking app

Swipe right to make the connections that could change your career.

Getty Images
Sponsored
Swipe right. Match. Meet over coffee or set up a call.

No, we aren't talking about Tinder. Introducing Shapr, a free app that helps people with synergistic professional goals and skill sets easily meet and collaborate.

Keep reading Show less

Space toilets: How astronauts boldly go where few have gone before

A NASA astronomer explains how astronauts dispose of their, uh, dark matter.

Videos
  • When nature calls in micro-gravity, astronauts must answer. Space agencies have developed suction-based toilets – with a camera built in to ensure all the waste is contained before "flushing".
  • Yes, there have been floaters in space. The early days of space exploration were a learning curve!
  • Amazingly, you don't need gravity to digest food. Peristalsis, the process by which your throat and intestines squeeze themselves, actually moves food and water through your digestive system without gravity at all.
Keep reading Show less

A world map of Virgin Mary apparitions

She met mere mortals with and without the Vatican's approval.

Strange Maps
  • For centuries, the Virgin Mary has appeared to the faithful, requesting devotion and promising comfort.
  • These maps show the geography of Marian apparitions – the handful approved by the Vatican, and many others.
  • Historically, Europe is where most apparitions have been reported, but the U.S. is pretty fertile ground too.
Keep reading Show less

Can the keto diet help treat depression? Here’s what the science says so far

A growing body of research shows promising signs that the keto diet might be able to improve mental health.

Photo: Public Domain
Mind & Brain
  • The keto diet is known to be an effective tool for weight loss, however its effects on mental health remain largely unclear.
  • Recent studies suggests that the keto diet might be an effective tool for treating depression, and clearing up so-called "brain fog," though scientists caution more research is necessary before it can be recommended as a treatment.
  • Any experiments with the keto diet are best done in conjunction with a doctor, considering some people face problems when transitioning to the low-carb diet.
Keep reading Show less