Brain-to-Brain Interface—the Next Great Leap in Human Communication

Mark Zuckerberg recently reiterated that brain-to-brain interfacing is our species future. Today, scientists can have participants move things on a screen with their mind and signal to one another across vast distances. It may someday have therapeutic uses for ADHD, give us sense experiences not akin to our species, and even allow advertisers to invade our minds. 


100,000 viewers recently tuned in to see Mark Zuckerberg and Jerry Seinfeld chew the fat on the first ever Q&A session on Facebook Live. At one point, Zuckerberg reiterated that the future of the internet and consequently humanity, lie in technology that gives us telepathic powers. In his view, we would be able to record our own experiences in real time, and share thoughts and feelings directly with friends and loved ones. He called it the “future of communication.” So how close are we to brain-to-brain interfacing?

Previous research in harnessing brain waves sound like pages out of a science fiction novel. Consider a monkey who could control a computer with its thoughts, and one human telepathically controlling the movements of another. Other experiments used “organic computers” with the brains of several chimps or rats all linked together

Neuroscientists at the University of Washington, Seattle recently announced electronically-assisted telepathy. In this experiment, two colleagues sat a mile apart using only the internet relaying their brainwaves. They played a game of 20 questions. This was made possible by the work of Miguel Nicolelis, a Brazilian researchers at Duke University. In the late 90’s he began experimenting with the brain’s electrical output, painstakingly checking each individual neuron. He and colleagues soon discovered which neurons did what. For instance, 48 specific neurons fire simultaneously to allow a rat to move. When they turned to monkeys, Nicolelis and his team were able to identify 100 neurons firing in unison. What they did next was astounding.

They connected a probe to a monkey’s brain, and had it move a dot around a screen with a joystick. When it got the dot in the center, it would receive a reward, some juice. By observing this movement, neuroscientists could recognize brain patterns. Now the joystick was taken away, the monkey was hooked up to another device, and soon it could move the dot around with its thoughts, just by picturing it in its head. This was the first experiment of its kind, the first time a primate moved something with its thoughts alone.

Model of the experiment.

The breakthrough inspired neuroscientists to begin what is known today as brain-to-brain interfacing (BBI). So far, results in humans have been limited. This is also due mostly to ethical rules which disallow the connecting of probes in the brains of living humans. Still, Chantel Prat and Andrea Stocco at the University of Washington rose to the challenge. First, they wanted to see if they could send a signal from one brain that would initiate a physical response in another.

They recruited two researchers who were positioned in different rooms across campus. Each was fitted with an electroencephalography (EEG) cap which measures brainwaves. One colleague in one room started playing a video game with his mind. To shoot in the game, he would simply imagine pressing the fire button. Another researcher was given noise-cancelling headphones. His head was fitted with a transcranial magnetic stimulation (TMS) coil. This device emits focused electrical signals. It was placed on the part of the brain that controls one’s finger. When the first researcher fired with his brain, the second one’s finger would pull the trigger. One man was controlling the other.

One problem with the telepathy model according to Prat, is that the person receiving telepathic signals can’t tell whether it is coming from their own brain or that of another. “Whatever shape (future brain-to-brain communication) takes is going to be very different than listening to someone's thoughts in your head," he said. Still, this research is already bearing fruit.

Brain to brain interface model (BBI). 

Nicolelis’s work has led to brain-to-machine interfaces. Today, the paralyzed are able to walk using brain signals sent to robotic prosthetics, and can even regain their sense of touch. Meanwhile, Prat thinks there may be applications for learning. You could tell when someone was focusing in class for instance, while another was daydreaming, using advanced EEG models. You could also hook up the brain of an ADHD student to that of someone who doesn’t have it, to see if you could in this way ease the symptoms of the condition. This is theoretical of course. Another proposed possibility is hooking up human brains to those of animals, and being able to experience sensations not relative to our species, like a dog’s sense of smell, or a dolphin’s sonar.  

Though Prat doesn’t believe downloading and broadcasting thoughts is possible, others are not so sure. One Harvard study had one person in India wearing an EEG/TMS setup linked to another through the internet in France. The participant in India thought the words “ciao” and “hola” which were emailed to and picked up by the other. These signals were perceived as flashes of light which could be deciphered into words. Adding onto this, University of Washington Researchers decided to play a game of 20 questions.

Here, two people were connected via computer. One wore an EEG cap and the other a TMS coil. The TMS wearer was shown a picture of an animal on the computer screen, say a shark. Then they would be asked a question like, “Can it fly?” The EEG wearer would think the word “yes” or “no.” These thoughts traveled to the other over the internet. The TMS wearer would see a phosphene or flash of light in their eyes if the answer was yes, signaling that they were on the right track. This team scored a 72% accuracy rate, compared to the 18% accuracy of the control group. So what’s the takeaway? Brain-to-brain communication may be possible. But flashes of light are a far cry from sending speech or images to someone else’s head.  

What human computer interface actually looks like. It is BBI when someone’s on the other end.

And say we do get there. Then what? Will advertisers be able to infiltrate (defile?) the last sacred space, that which lies between our ears? And what will be the result? Would we become more empathetic to the suffering of others, or more tolerant of it, having glutted on others intense emotions so often as to become desensitized to it?

Perhaps the intensity would even lead to a new form of addiction. If internet porn is killing productivity and affecting human relationships, imagine being inside the head of someone having an orgasm, or a whole crowd of them, without being present in the physical sense. A string of such experiences on a daily basis could have a generation forego the hardship of getting an education or working, and the difficulty of real human relationships, for that which is easy, yet intensely satisfying. Anyone who has been in a relationship knows that sometimes we wish our partner could read our thoughts. But commercializing on such technology is another matter entirely.

To learn more about electronically assisted psychic abilities click here: 

Related Articles

Major study: Drug overdoses over a 38-year period reveal hidden trends

It's just the current cycle that involves opiates, but methamphetamine, cocaine, and others have caused the trajectory of overdoses to head the same direction

From the study:
Surprising Science
  • It appears that overdoses are increasing exponentially, no matter the drug itself
  • If the study bears out, it means that even reducing opiates will not slow the trajectory.
  • The causes of these trends remain obscure, but near the end of the write-up about the study, a hint might be apparent
Keep reading Show less

Why "nuclear pasta" is the strongest material in the universe

Through computationally intensive computer simulations, researchers have discovered that "nuclear pasta," found in the crusts of neutron stars, is the strongest material in the universe.

Accretion disk surrounding a neutron star. Credit: NASA
Surprising Science
  • The strongest material in the universe may be the whimsically named "nuclear pasta."
  • You can find this substance in the crust of neutron stars.
  • This amazing material is super-dense, and is 10 billion times harder to break than steel.

Superman is known as the "Man of Steel" for his strength and indestructibility. But the discovery of a new material that's 10 billion times harder to break than steel begs the question—is it time for a new superhero known as "Nuclear Pasta"? That's the name of the substance that a team of researchers thinks is the strongest known material in the universe.

Unlike humans, when stars reach a certain age, they do not just wither and die, but they explode, collapsing into a mass of neurons. The resulting space entity, known as a neutron star, is incredibly dense. So much so that previous research showed that the surface of a such a star would feature amazingly strong material. The new research, which involved the largest-ever computer simulations of a neutron star's crust, proposes that "nuclear pasta," the material just under the surface, is actually stronger.

The competition between forces from protons and neutrons inside a neutron star create super-dense shapes that look like long cylinders or flat planes, referred to as "spaghetti" and "lasagna," respectively. That's also where we get the overall name of nuclear pasta.

Caplan & Horowitz/arXiv

Diagrams illustrating the different types of so-called nuclear pasta.

The researchers' computer simulations needed 2 million hours of processor time before completion, which would be, according to a press release from McGill University, "the equivalent of 250 years on a laptop with a single good GPU." Fortunately, the researchers had access to a supercomputer, although it still took a couple of years. The scientists' simulations consisted of stretching and deforming the nuclear pasta to see how it behaved and what it would take to break it.

While they were able to discover just how strong nuclear pasta seems to be, no one is holding their breath that we'll be sending out missions to mine this substance any time soon. Instead, the discovery has other significant applications.

One of the study's co-authors, Matthew Caplan, a postdoctoral research fellow at McGill University, said the neutron stars would be "a hundred trillion times denser than anything on earth." Understanding what's inside them would be valuable for astronomers because now only the outer layer of such starts can be observed.

"A lot of interesting physics is going on here under extreme conditions and so understanding the physical properties of a neutron star is a way for scientists to test their theories and models," Caplan added. "With this result, many problems need to be revisited. How large a mountain can you build on a neutron star before the crust breaks and it collapses? What will it look like? And most importantly, how can astronomers observe it?"

Another possibility worth studying is that, due to its instability, nuclear pasta might generate gravitational waves. It may be possible to observe them at some point here on Earth by utilizing very sensitive equipment.

The team of scientists also included A. S. Schneider from California Institute of Technology and C. J. Horowitz from Indiana University.

Check out the study "The elasticity of nuclear pasta," published in Physical Review Letters.

How a huge, underwater wall could save melting Antarctic glaciers

Scientists think constructing a miles-long wall along an ice shelf in Antarctica could help protect the world's largest glacier from melting.

Image: NASA
Surprising Science
  • Rising ocean levels are a serious threat to coastal regions around the globe.
  • Scientists have proposed large-scale geoengineering projects that would prevent ice shelves from melting.
  • The most successful solution proposed would be a miles-long, incredibly tall underwater wall at the edge of the ice shelves.

The world's oceans will rise significantly over the next century if the massive ice shelves connected to Antarctica begin to fail as a result of global warming.

To prevent or hold off such a catastrophe, a team of scientists recently proposed a radical plan: build underwater walls that would either support the ice or protect it from warm waters.

In a paper published in The Cryosphere, Michael Wolovick and John Moore from Princeton and the Beijing Normal University, respectively, outlined several "targeted geoengineering" solutions that could help prevent the melting of western Antarctica's Florida-sized Thwaites Glacier, whose melting waters are projected to be the largest source of sea-level rise in the foreseeable future.

An "unthinkable" engineering project

"If [glacial geoengineering] works there then we would expect it to work on less challenging glaciers as well," the authors wrote in the study.

One approach involves using sand or gravel to build artificial mounds on the seafloor that would help support the glacier and hopefully allow it to regrow. In another strategy, an underwater wall would be built to prevent warm waters from eating away at the glacier's base.

The most effective design, according to the team's computer simulations, would be a miles-long and very tall wall, or "artificial sill," that serves as a "continuous barrier" across the length of the glacier, providing it both physical support and protection from warm waters. Although the study authors suggested this option is currently beyond any engineering feat humans have attempted, it was shown to be the most effective solution in preventing the glacier from collapsing.

Source: Wolovick et al.

An example of the proposed geoengineering project. By blocking off the warm water that would otherwise eat away at the glacier's base, further sea level rise might be preventable.

But other, more feasible options could also be effective. For example, building a smaller wall that blocks about 50% of warm water from reaching the glacier would have about a 70% chance of preventing a runaway collapse, while constructing a series of isolated, 1,000-foot-tall columns on the seafloor as supports had about a 30% chance of success.

Still, the authors note that the frigid waters of the Antarctica present unprecedently challenging conditions for such an ambitious geoengineering project. They were also sure to caution that their encouraging results shouldn't be seen as reasons to neglect other measures that would cut global emissions or otherwise combat climate change.

"There are dishonest elements of society that will try to use our research to argue against the necessity of emissions' reductions. Our research does not in any way support that interpretation," they wrote.

"The more carbon we emit, the less likely it becomes that the ice sheets will survive in the long term at anything close to their present volume."

A 2015 report from the National Academies of Sciences, Engineering, and Medicine illustrates the potentially devastating effects of ice-shelf melting in western Antarctica.

"As the oceans and atmosphere warm, melting of ice shelves in key areas around the edges of the Antarctic ice sheet could trigger a runaway collapse process known as Marine Ice Sheet Instability. If this were to occur, the collapse of the West Antarctic Ice Sheet (WAIS) could potentially contribute 2 to 4 meters (6.5 to 13 feet) of global sea level rise within just a few centuries."