3 Americans Awarded Nobel Prize for Unlocking the Body Clock

They proved how the biological mechanism works inside our cells.

The circadian clock.
The circadian clock. Credit: Mattias Karlén. The Nobel Committee for Physiology or Medicine.

The Nobel Prize for Physiology (or Medicine) was announced on Oct. 2 in Sweden. Three American scientists jointly took home this prestigious award for their work on circadian rhythms. This is the biological clock all organisms have which controls our sleep-wake cycle, the release of hormones at important intervals, body temperature, blood pressure, and other critical mechanisms, in order to maintain homeostasis or balance.


All life seemingly has an internal clock, set to fall in line with the rotation of the Earth. This internal mechanism helps life adapt as well to changing aspects of the day and environment. Jeffrey C. Hall, Michael Rosbash, and Michael W. Young are the three newly dubbed Nobel laureates. Hall and Rosbash are from Brandeis University in Boston, while Young hails from Rockefeller University in New York City.

Hall is 72 years old, Rosbash 73, and Young 68. The three will split the $1.1 million prize money this December. Officials at the Swedish Royal Academy of Sciences made the announcement at The Nobel Assembly at Karolinska Institutet in Solna, Sweden.

We’ve known of these rhythms for a long time. Astronomer Jean Jacques d’Ortous de Mairan in the 18th century was the first to show the existence of a biological clock. He proved that mimosa plants, even when plunged into total darkness, still carried on processes in a 24-hour cycle. Soon, similar rhythms were found in other organisms. Basically, Hall, Rosbash, and Young uncovered the biological mechanism required to synchronize each cell.


Figure 1. An internal biological clock. The leaves of the mimosa plant open towards the sun during day but close at dusk (upper part). Jean Jacques d'Ortous de Mairan placed the plant in constant darkness (lower part) and found that the leaves continue to follow their normal daily rhythm, even without any fluctuations in daily light. [Image & caption: Nobelprize.org]

 The laureates began work on their discovery in 1984. Hall and Rosbash collaborated at Brandeis while Young did his part at Rockefeller. They were all working with fruit flies. Hall and Rosbash discovered a certain protein known as PER. This would build up in the fly’s system overnight and disappear over the course of the day. The protein was found to change significantly over a 24-hour period. So it’s essentially the main driver for the insect’s internal clock. Hall meanwhile isolated what's known as the period gene which encodes for the PER protein.

Hall found that blocking the period gene disrupts the fly’s internal clock. From there, it was discovered that the gene helps control the PER protein by inhibiting its activity. Seymour Benzer and Ronald Konopka in the 1970s were the first to discover a period gene. But these new laureates found out how such a gene works.

In the fruit flies, the period gene prevents PER from synthesizing, regulating it and keeping the fly’s biological clock synchronized. In 1994, Young went a step further and proved how the PER protein built up overnight again within a cell's cytoplasm. He found another gene, called timeless, which encodes the TIM protein.

TIM becomes active overnight within the cytoplasm, allowing PER to build up there. Come morning, these two proteins bind together and enter the cell's nucleus, where PER is incrementally worn away by the period gene, through an impressive feedback loop. By identifying these genes and the proteins that they make, researchers were able to reveal a crucial mechanism at work within all life.

Why is this work so important? 2001 Nobel Prize laureate Sir Paul Nurse underscored that in an interview with The Guardian:

It’s important for the basic understanding of life. Every living organism on this planet responds to the sun. All plant and also animal behaviour is determined by the light-dark cycle. We on this planet are slaves to the sun. The circadian clock is embedded in our mechanisms of working, our metabolism, it’s embedded everywhere, it’s a real core feature for understanding life.

There’s a second reason. We are increasingly becoming aware that there are implications for human disease. With the modern technological age we get more and more divorced from the circadian rhythm, as we are able to travel across time zones and disturb our circadian rhythm. We can now live in light-dark regimes that are nothing to do with the circadian rhythm. This is leading to conditions like jet lag which are disturbing and may in turn also lead to other consequences that we don’t fully understand about the human condition.

There is some evidence that treatment of disease can be influenced by circadian rhythms too. People have reported that when you have surgery or when you have a drug can actually influence things. It’s still not clear, but there will almost certainly be some implications for the treatment of disease too.

To hear about this discovery from Young and Rosbash, click here:

3,000-pound Triceratops skull unearthed in South Dakota

"You dream about these kinds of moments when you're a kid," said lead paleontologist David Schmidt.

Excavation of a triceratops skull in South Dakota.

Credit: David Schmidt / Westminster College
Surprising Science
  • The triceratops skull was first discovered in 2019, but was excavated over the summer of 2020.
  • It was discovered in the South Dakota Badlands, an area where the Triceratops roamed some 66 million years ago.
  • Studying dinosaurs helps scientists better understand the evolution of all life on Earth.
Keep reading Show less

A new franchising model offers business opportunities to those who need it most

A socially minded franchise model makes money while improving society.

Freethink
Technology & Innovation
  • A social enterprise in California makes their franchises affordable with low interest loans and guaranteed salaries.
  • The loans are backed by charitable foundations.
  • If scaled up, the model could support tens of thousands of entrepreneurs who are currently financially incapable of entering franchise agreements.
Keep reading Show less

Gamification: can video games change our money habits?

Fintech companies are using elements of video games to make personal finance more fun. But does it work, and what are the risks?

Pixel art scene

Mind & Brain
  • Gamification is the process of incorporating elements of video games into a business, organization, or system, with the goal of boosting engagement or performance.
  • Gamified personal finance apps aim to help people make better financial decisions, often by redirecting destructive financial behaviors (like playing the lottery) toward positive outcomes.
  • Still, gamification has its risks, and scientists are still working to understand how gamification affects our financial behavior.
Keep reading Show less
Sponsored by Million Stories

Want to save more money? Start playing video games.

Playing video games could help you make better decisions about money.

Quantcast