3 Americans Awarded Nobel Prize for Unlocking the Body Clock

They proved how the biological mechanism works inside our cells.

The Nobel Prize for Physiology (or Medicine) was announced on Oct. 2 in Sweden. Three American scientists jointly took home this prestigious award for their work on circadian rhythms. This is the biological clock all organisms have which controls our sleep-wake cycle, the release of hormones at important intervals, body temperature, blood pressure, and other critical mechanisms, in order to maintain homeostasis or balance.

All life seemingly has an internal clock, set to fall in line with the rotation of the Earth. This internal mechanism helps life adapt as well to changing aspects of the day and environment. Jeffrey C. Hall, Michael Rosbash, and Michael W. Young are the three newly dubbed Nobel laureates. Hall and Rosbash are from Brandeis University in Boston, while Young hails from Rockefeller University in New York City.

Hall is 72 years old, Rosbash 73, and Young 68. The three will split the $1.1 million prize money this December. Officials at the Swedish Royal Academy of Sciences made the announcement at The Nobel Assembly at Karolinska Institutet in Solna, Sweden.

We’ve known of these rhythms for a long time. Astronomer Jean Jacques d’Ortous de Mairan in the 18th century was the first to show the existence of a biological clock. He proved that mimosa plants, even when plunged into total darkness, still carried on processes in a 24-hour cycle. Soon, similar rhythms were found in other organisms. Basically, Hall, Rosbash, and Young uncovered the biological mechanism required to synchronize each cell.

Figure 1. An internal biological clock. The leaves of the mimosa plant open towards the sun during day but close at dusk (upper part). Jean Jacques d'Ortous de Mairan placed the plant in constant darkness (lower part) and found that the leaves continue to follow their normal daily rhythm, even without any fluctuations in daily light. [Image & caption: Nobelprize.org]

 The laureates began work on their discovery in 1984. Hall and Rosbash collaborated at Brandeis while Young did his part at Rockefeller. They were all working with fruit flies. Hall and Rosbash discovered a certain protein known as PER. This would build up in the fly’s system overnight and disappear over the course of the day. The protein was found to change significantly over a 24-hour period. So it’s essentially the main driver for the insect’s internal clock. Hall meanwhile isolated what's known as the period gene which encodes for the PER protein.

Hall found that blocking the period gene disrupts the fly’s internal clock. From there, it was discovered that the gene helps control the PER protein by inhibiting its activity. Seymour Benzer and Ronald Konopka in the 1970s were the first to discover a period gene. But these new laureates found out how such a gene works.

In the fruit flies, the period gene prevents PER from synthesizing, regulating it and keeping the fly’s biological clock synchronized. In 1994, Young went a step further and proved how the PER protein built up overnight again within a cell's cytoplasm. He found another gene, called timeless, which encodes the TIM protein.

TIM becomes active overnight within the cytoplasm, allowing PER to build up there. Come morning, these two proteins bind together and enter the cell's nucleus, where PER is incrementally worn away by the period gene, through an impressive feedback loop. By identifying these genes and the proteins that they make, researchers were able to reveal a crucial mechanism at work within all life.

Why is this work so important? 2001 Nobel Prize laureate Sir Paul Nurse underscored that in an interview with The Guardian:

It’s important for the basic understanding of life. Every living organism on this planet responds to the sun. All plant and also animal behaviour is determined by the light-dark cycle. We on this planet are slaves to the sun. The circadian clock is embedded in our mechanisms of working, our metabolism, it’s embedded everywhere, it’s a real core feature for understanding life.

There’s a second reason. We are increasingly becoming aware that there are implications for human disease. With the modern technological age we get more and more divorced from the circadian rhythm, as we are able to travel across time zones and disturb our circadian rhythm. We can now live in light-dark regimes that are nothing to do with the circadian rhythm. This is leading to conditions like jet lag which are disturbing and may in turn also lead to other consequences that we don’t fully understand about the human condition.

There is some evidence that treatment of disease can be influenced by circadian rhythms too. People have reported that when you have surgery or when you have a drug can actually influence things. It’s still not clear, but there will almost certainly be some implications for the treatment of disease too.

To hear about this discovery from Young and Rosbash, click here:

Stand up against religious discrimination – even if it’s not your religion

As religious diversity increases in the United States, we must learn to channel religious identity into interfaith cooperation.

Sponsored by Charles Koch Foundation
  • Religious diversity is the norm in American life, and that diversity is only increasing, says Eboo Patel.
  • Using the most painful moment of his life as a lesson, Eboo Patel explains why it's crucial to be positive and proactive about engaging religious identity towards interfaith cooperation.
  • The opinions expressed in this video do not necessarily reflect the views of the Charles Koch Foundation, which encourages the expression of diverse viewpoints within a culture of civil discourse and mutual respect.
Keep reading Show less

Moon landing astronauts reveal they possibly infected Earth with space germs

Two Apollo 11 astronauts question NASA's planetary safety procedures.

Credit: Bettmann, Getty Images.
Surprising Science
  • Buzz Aldrin and Michael Collins revealed that there were deficiencies in NASA's safety procedures following the Apollo 11 mission.
  • Moon landing astronauts were quarantined for 21 days.
  • Earth could be contaminated with lunar bacteria.
Keep reading Show less

NASA's idea for making food from thin air just became a reality — it could feed billions

Here's why you might eat greenhouse gases in the future.

Jordane Mathieu on Unsplash
Technology & Innovation
  • The company's protein powder, "Solein," is similar in form and taste to wheat flour.
  • Based on a concept developed by NASA, the product has wide potential as a carbon-neutral source of protein.
  • The man-made "meat" industry just got even more interesting.
Keep reading Show less

Where the evidence of fake news is really hiding

When it comes to sniffing out whether a source is credible or not, even journalists can sometimes take the wrong approach.

Sponsored by Charles Koch Foundation
  • We all think that we're competent consumers of news media, but the research shows that even journalists struggle with identifying fact from fiction.
  • When judging whether a piece of media is true or not, most of us focus too much on the source itself. Knowledge has a context, and it's important to look at that context when trying to validate a source.
  • The opinions expressed in this video do not necessarily reflect the views of the Charles Koch Foundation, which encourages the expression of diverse viewpoints within a culture of civil discourse and mutual respect.
Keep reading Show less