Talent, you’re born with. Creativity, you can grow yourself.

In such states of creative divergent thinking, the body is aroused and the pupils become dilated.

OSCAR RIVERA/AFP via Getty Images
Creativity, it is said, is intelligence having fun.

It's the ability to generate ideas, solutions or insights that are strikingly original, and yet feasible: in cognitive terms, a compelling creative idea doesn't break down if one were to systematically tease apart its logic. At the same time, it weaves together concepts that were never before part of the same fabric.

A decade ago, a team of psychologists from the Netherlands proposed the 'dual pathway to creativity model', suggesting that creative ideation occurs when cognitive flexibility is married to cognitive persistence. Cognitive flexibility allows us to make rapid switches in thinking between one concept and another, and to think about multiple concepts simultaneously, while cognitive persistence enables us to stick with a difficult task or conceptualisation in order to achieve a goal. As with a musical harmony where the flautist, violinist, pianist and trombonist must all stick to their individual parts and yet listen to each other and adapt to make fine music, so it is with the creative brain.

The players in this neural orchestra consist of three functional brain networks. These form when different regions of the brain (that are not structurally adjacent) are activated together whenever we undertake specific tasks. When it comes to creativity, the major functional networks in play are the central executive network (CEN), the salience network (SN) and the default mode network (DMN). Brain imaging studies reveal that the CEN is important for flexible, moment-to-moment control. The lateral frontal and parietal brain regions are heavily involved when humans multitask, for instance. Tellingly, a study by neuroscientists at Vanderbilt University in the United States and the University of Queensland in Australia found that efficient multitasking is not represented in the brain as the ability to simultaneously process multiple streams of information, but is instead a very rapid processing of one task after the other. Significantly, they found that we can learn to speed up the processing of each individual task and, hence, multitask better.

The lateral frontal cortex is also heavily activated when individuals engage in divergent thinking, and divergent thinking is how scientists measure creativity; in real life, we can think divergently every day – concocting a recipe from whatever's in the fridge, navigating a car through heavy traffic, making art from nontraditional materials using items from the recycling bin.

In contrast, the SN, or salience network, whose major hub is the anterior cingulate cortex, is important for sustained task maintenance. This brain region is involved in decision-making and self-regulation, in short, in almost any task that requires cognitive persistence. Finally, the DMN, or default mode network, whose main hubs are in the anterior medial prefrontal cortex and the posterior cingulate cortex, represents what we think of when we're not task-focused. As humans, we spend much of our time daydreaming, mind-wandering, procrastinating, mulling on the past and the future (it is, in fact, very difficult to remain in the present moment) and the DMN is the functional network behind all such self-referential thought. When we engage in tasks requiring us to pay attention to the external world, activity in the DMN is suppressed so that we're not sidelined by distracting, irrelevant thoughts.

Yet these same distractions and the faraway worlds of our imagination hold the secret to creativity, if only we might harness them and stitch them into the chain of ideas that builds towards a specific goal – a new recipe, a poem, a painting or a musical improvisation. Recent studies indicate that hub regions of the DMN activate simultaneously with those of the CEN and SN, and function in concert during creative ideation. This is a remarkable dance, portraying the dynamic nature of our brain networks. Typically, the CEN and SN exert control over and oppose the DMN yet, during moments of creativity, the DMN allows the spontaneous generation of candidate ideas, possibly from our long-term memory storage, while the CEN/SN come together harmoniously to make use of these ideas towards a specific goal.

Now that we understand the mechanisms in play, it's tempting to ask if we can learn to be more creative. Creativity does have some genetic heritability: talent – mathematical, musical – runs in families. For example, the Dutch identical twins David Oyens and Pieter Oyens were both successful 19th-century painters. But, given that the human brain is plastic, constantly learning and changing, can we also learn to be creative, based on our experiences?

In a 2014 study from Stanford University in California, scientists paired with design school faculty to evaluate a very popular class: 'Creative Gym'. In this class, participants work individually on hands-on activities that are unconventional, fast-paced yet immersive, using everyday office supplies as materials. Students are asked to rapidly work through a series of phases: observe, brainstorm, synthesise, prototype and implement, repeating as necessary, to generate innovative solutions. The study showed that students in this creative capacity-building programme tested better on divergent thinking problems against students in a control group. In another study, a collaborative team of neuroscientists and psychologists at Dalian University of Technology in China and the University of Oregon in the US tested participants on divergent thinking tests before and after short-term meditation (30 minutes per day for seven days). The control group practised relaxation for the same duration. The researchers found that creativity can be significantly enhanced by meditation.

Interestingly, these studies used quite contrasting approaches to test whether creativity is learnable. In the Stanford study, participants exercised cognitive flexibility to generate creative solutions in the classroom. Meanwhile, the meditative training of the Dalian-Oregon study was an exercise in cognitive persistence, the main focus being on building greater awareness of one's sensory experiences. While the researchers in these studies didn't use brain imaging, one can imagine the dynamic dance between the control networks in the brains of the learners, finely collaborating with the spontaneous-thought-generating default network. Overall, these studies suggest that there might be multiple ways to enhance creativity – many pathways to a more creative brain.

Artists, who are creative by profession, often recount the creative process as one in which they become transfigured in mind and body, and by a process over which they don't have much control. They talk about being 'in the zone', or in a state of flow. In such states of creative divergent thinking, the body is aroused and the pupils become dilated. In a recent study, researchers at the MIT Center for Collective Intelligence in the US configured a smartwatch to sense body signals, including heartrate and accelerometer-derived body movement, and got individuals engaged in creative team activities to wear them all day. What they found was that the objectively measured body signals were significant predictors of perceived creativity, as reported by the test subjects. Higher intensity and higher consistency (or lower variability) of body-signal activity predicted greater creativity. The body-signal metrics further complemented self-ratings of personality type and mood.

Although researchers interested in the physical modalities and neurological pathways of creativity are making headway in understanding how it works – as well as how it can be stimulated – creativity retains a certain mystique as a unique state of being, when mind and body resonate in perfect harmony, like a tuning fork generating a pure tone.

This Idea was made possible through the support of a grant to Aeon from the John Templeton Foundation. The opinions expressed in this publication are those of the author and do not necessarily reflect the views of the Foundation. Funders to Aeon Magazine are not involved in editorial decision-making.Aeon counter – do not remove

This article was originally published at Aeon and has been republished under Creative Commons. Read the original article.

Yug, age 7, and Alia, age 10, both entered Let Grow's "Independence Challenge" essay contest.

Photos: Courtesy of Let Grow
Sponsored by Charles Koch Foundation
  • The coronavirus pandemic may have a silver lining: It shows how insanely resourceful kids really are.
  • Let Grow, a non-profit promoting independence as a critical part of childhood, ran an "Independence Challenge" essay contest for kids. Here are a few of the amazing essays that came in.
  • Download Let Grow's free Independence Kit with ideas for kids.
Keep reading Show less

Divers discover world's largest underwater cave system filled with Mayan mysteries

Researchers in Mexico discover the longest underwater cave system in the world that's full of invaluable artifacts. 

Divers of the GAM project. Credit: Herbert Meyrl.
Technology & Innovation

Keep reading Show less

The surprise reason sleep-deprivation kills lies in the gut

New research establishes an unexpected connection.

Reactive oxygen species (ROS) accumulate in the gut of sleep-deprived fruit flies, one (left), seven (center) and ten (right) days without sleep.

Image source: Vaccaro et al, 2020/Harvard Medical School
Surprising Science
  • A study provides further confirmation that a prolonged lack of sleep can result in early mortality.
  • Surprisingly, the direct cause seems to be a buildup of Reactive Oxygen Species in the gut produced by sleeplessness.
  • When the buildup is neutralized, a normal lifespan is restored.

We don't have to tell you what it feels like when you don't get enough sleep. A night or two of that can be miserable; long-term sleeplessness is out-and-out debilitating. Though we know from personal experience that we need sleep — our cognitive, metabolic, cardiovascular, and immune functioning depend on it — a lack of it does more than just make you feel like you want to die. It can actually kill you, according to study of rats published in 1989. But why?

A new study answers that question, and in an unexpected way. It appears that the sleeplessness/death connection has nothing to do with the brain or nervous system as many have assumed — it happens in your gut. Equally amazing, the study's authors were able to reverse the ill effects with antioxidants.

The study, from researchers at Harvard Medical School (HMS), is published in the journal Cell.

An unexpected culprit

The new research examines the mechanisms at play in sleep-deprived fruit flies and in mice — long-term sleep-deprivation experiments with humans are considered ethically iffy.

What the scientists found is that death from sleep deprivation is always preceded by a buildup of Reactive Oxygen Species (ROS) in the gut. These are not, as their name implies, living organisms. ROS are reactive molecules that are part of the immune system's response to invading microbes, and recent research suggests they're paradoxically key players in normal cell signal transduction and cell cycling as well. However, having an excess of ROS leads to oxidative stress, which is linked to "macromolecular damage and is implicated in various disease states such as atherosclerosis, diabetes, cancer, neurodegeneration, and aging." To prevent this, cellular defenses typically maintain a balance between ROS production and removal.

"We took an unbiased approach and searched throughout the body for indicators of damage from sleep deprivation," says senior study author Dragana Rogulja, admitting, "We were surprised to find it was the gut that plays a key role in causing death." The accumulation occurred in both sleep-deprived fruit flies and mice.

"Even more surprising," Rogulja recalls, "we found that premature death could be prevented. Each morning, we would all gather around to look at the flies, with disbelief to be honest. What we saw is that every time we could neutralize ROS in the gut, we could rescue the flies." Fruit flies given any of 11 antioxidant compounds — including melatonin, lipoic acid and NAD — that neutralize ROS buildups remained active and lived a normal length of time in spite of sleep deprivation. (The researchers note that these antioxidants did not extend the lifespans of non-sleep deprived control subjects.)

fly with thought bubble that says "What? I'm awake!"

Image source: Tomasz Klejdysz/Shutterstock/Big Think

The experiments

The study's tests were managed by co-first authors Alexandra Vaccaro and Yosef Kaplan Dor, both research fellows at HMS.

You may wonder how you compel a fruit fly to sleep, or for that matter, how you keep one awake. The researchers ascertained that fruit flies doze off in response to being shaken, and thus were the control subjects induced to snooze in their individual, warmed tubes. Each subject occupied its own 29 °C (84F) tube.

For their sleepless cohort, fruit flies were genetically manipulated to express a heat-sensitive protein in specific neurons. These neurons are known to suppress sleep, and did so — the fruit flies' activity levels, or lack thereof, were tracked using infrared beams.

Starting at Day 10 of sleep deprivation, fruit flies began dying, with all of them dead by Day 20. Control flies lived up to 40 days.

The scientists sought out markers that would indicate cell damage in their sleepless subjects. They saw no difference in brain tissue and elsewhere between the well-rested and sleep-deprived fruit flies, with the exception of one fruit fly.

However, in the guts of sleep-deprived fruit flies was a massive accumulation of ROS, which peaked around Day 10. Says Vaccaro, "We found that sleep-deprived flies were dying at the same pace, every time, and when we looked at markers of cell damage and death, the one tissue that really stood out was the gut." She adds, "I remember when we did the first experiment, you could immediately tell under the microscope that there was a striking difference. That almost never happens in lab research."

The experiments were repeated with mice who were gently kept awake for five days. Again, ROS built up over time in their small and large intestines but nowhere else.

As noted above, the administering of antioxidants alleviated the effect of the ROS buildup. In addition, flies that were modified to overproduce gut antioxidant enzymes were found to be immune to the damaging effects of sleep deprivation.

The research leaves some important questions unanswered. Says Kaplan Dor, "We still don't know why sleep loss causes ROS accumulation in the gut, and why this is lethal." He hypothesizes, "Sleep deprivation could directly affect the gut, but the trigger may also originate in the brain. Similarly, death could be due to damage in the gut or because high levels of ROS have systemic effects, or some combination of these."

The HMS researchers are now investigating the chemical pathways by which sleep-deprivation triggers the ROS buildup, and the means by which the ROS wreak cell havoc.

"We need to understand the biology of how sleep deprivation damages the body so that we can find ways to prevent this harm," says Rogulja.

Referring to the value of this study to humans, she notes,"So many of us are chronically sleep deprived. Even if we know staying up late every night is bad, we still do it. We believe we've identified a central issue that, when eliminated, allows for survival without sleep, at least in fruit flies."

Withdrawal symptoms from antidepressants can last over a year, new study finds

We must rethink the "chemical imbalance" theory of mental health.

Bottles of antidepressant pills named (L-R) Wellbutrin, Paxil, Fluoxetine and Lexapro are shown March 23, 2004 photographed in Miami, Florida.

Photo Illustration by Joe Raedle/Getty Images
Surprising Science
  • A new review found that withdrawal symptoms from antidepressants and antipsychotics can last for over a year.
  • Side effects from SSRIs, SNRIs, and antipsychotics last longer than benzodiazepines like Valium or Prozac.
  • The global antidepressant market is expected to reach $28.6 billion this year.
Keep reading Show less
Scroll down to load more…