Scientists reverse the arrow of time in quantum systems

A team of researchers reverses the arrow of time in quantum experiments.

clocks
Credit: Pixabay


It’s not quite time travel, but scientists appear to have reversed the arrow of time in quantum systems. The “arrow of time” is the concept that natural processes run forward, not in reverse. An international team of researchers was able to show that given specific conditions, heat can flow from a cold quantum particle to one that’s hotter. 

The arrow of time is derived from the second law of thermodynamics, which says that entropy increases over time. Entropy is the measure of disorder. The law explains why it’s hard to unbreak stuff or why a hot cup of tea will eventually turn cold. It just doesn’t usually work the other way. 

What the scientists found is that “the arrow of time is not an absolute concept, but a relative concept,” as says the study’s co-author Eric Lutz, a theoretical physicist at the University of Erlangen-Nürnberg in Germany. His lab was able to reverse the flow of heat in two quantum particles. They were correlated, meaning that their properties were linked, similarly to quantum entanglement but less strong. The special quality of correlated particles is that they share some information with each other. This property is not possible for bigger objects. 

The researchers, led by the physicist Roberto Serra from the Federal University of ABC in Santo André, Brazil, manipulated molecules of chloroform. These are made of carbon, hydrogen and chlorine atoms.

The scientists heated up the nucleus of the hydrogen atom more than the nucleus of the carbon and observed how the energy flowed. In an uncorrelated state, the heat flowed as expected, from hot to cold. But when the nuclei became correlated, heat flowed backwards with the hotter hydrogen nucleus getting hotter and the cooler carbon getting cooler. 

The significance of the experiment lies in demonstrating an exception to the second law of thermodynamics, which doesn’t take into account correlated particles.  

While odd behavior at the quantum level may be hard to grasp, what is more tangibly exciting is that the scientists are aiming to use these particle quirks to design super-small quantum engines.

You can read their study here.

 

 

Weird science shows unseemly way beetles escape after being eaten

Certain water beetles can escape from frogs after being consumed.

R. attenuata escaping from a black-spotted pond frog.

Surprising Science
  • A Japanese scientist shows that some beetles can wiggle out of frog's butts after being eaten whole.
  • The research suggests the beetle can get out in as little as 7 minutes.
  • Most of the beetles swallowed in the experiment survived with no complications after being excreted.
Keep reading Show less

Stressed-out mothers are twice as likely to give birth to a girl

New research from the University of Granada found that stress could help determine sex.

Photo: Romolo Tavani / Adobe Stock
Surprising Science
  • A new study found that women with elevated stress before, during, and after conception are twice as likely to deliver a girl.
  • One factor could be that sperm carrying an X chromosome are better equipped to reach the egg under adverse conditions.
  • Another factor could be miscarriage of male fetuses during times of stress.
  • Keep reading Show less

    The cost of world peace? It's much less than the price of war

    The world's 10 most affected countries are spending up to 59% of their GDP on the effects of violence.

    Mario Tama/Getty Images
    Politics & Current Affairs
    • Conflict and violence cost the world more than $14 trillion a year.
    • That's the equivalent of $5 a day for every person on the planet.
    • Research shows that peace brings prosperity, lower inflation and more jobs.
    • Just a 2% reduction in conflict would free up as much money as the global aid budget.
    • Report urges governments to improve peacefulness, especially amid COVID-19.
    Keep reading Show less
    Surprising Science

    The evolution of modern rainforests began with the dinosaur-killing asteroid

    The lush biodiversity of South America's rainforests is rooted in one of the most cataclysmic events that ever struck Earth.

    Quantcast