Scientists restore vision in blind mice using gold and titanium nanowire arrays

A new study from scientists in China suggests that medical devices could one day restore vision to the blind.

Researchers developed artificial photoreceptors based on gold nanoparticle-decorated titania nanowire arrays to restore visual responses in the blind mice.
Researchers developed artificial photoreceptors based on gold nanoparticle-decorated titania nanowire arrays to restore visual responses in the blind mice.


A team of scientists in China just took a big step toward developing technology that could one day restore vision to the blind.

Researchers at Fudan University and the University of Science and Technology of China recently published a paper in the journal Nature Communications that outlines how they used artificial photoreceptors to restore vision to blind mice.

Photoreceptors are structures that translate light into neural signals for the brain. They’re able to do this because they contain chemicals that change when hit with photons, which produces an electrical signal that’s sent to the brain along the optic nerve.

For the study, the team genetically engineered a group of mice to develop progressively degraded photoreceptors, similar to eye diseases like retinitis pigmentosa and macular degeneration in humans. This left the mice’s eyes and visual processing systems intact but rendered visual signals unable to reach the brain.

 This illustration from the paper shows, from left to right, an eye, a retina with healthy photoreceptors, and a retina with a nanowire array.

Researchers then replaced the degraded photoreceptors with artificial ones made from tiny nanowire that was “decorated” with gold nanoparticles. This material was chosen by researchers because of its “high surface areas, large charge transport mobility, excellent biocompatibility and stability.”

Like natural photoreceptors, these nanowire arrays were placed in physical contact with retinal cells and were able to transport electrical impulses to the visual cortex. The team verified this by measuring activity in the mice’s visual cortexes after shining light onto their eyes, and by observing dilation in their pupils.

Compared to mice in the control group, the once-blind mice were able to respond to light of similar intensity, though their artificial photoreceptors could only sense green, blue and light near ultraviolet spectrum. Of course, it’s impossible to say for sure what the mice were seeing.

The technique used in the study was experimental, and even if it’s proven to be safe and effective for humans, it’ll take years before it’s available to the wider public. Still, the results suggest hope for the idea that medical devices may one day restore vision to people for whom it’s slipped away.


Airspeeder's ‘flying car’ racers to be shielded by virtual force-fields

Welcome to the world's newest motorsport: manned multicopter races that exceed speeds of 100 mph.

Credit: Airspeeder
Technology & Innovation
  • Airspeeder is a company that aims to put on high-speed races featuring electric flying vehicles.
  • The so-called Speeders are able to fly at speeds of up to 120 mph.
  • The motorsport aims to help advance the electric vertical take-off and landing (eVTOL) sector, which could usher in the age of air taxis.
Keep reading Show less

How space debris created the world’s largest garbage dump

Since 1957, the world's space agencies have been polluting the space above us with countless pieces of junk, threatening our technological infrastructure and ability to venture deeper into space.

Space debris orbiting Earth

Framestock via Adobe Stock
Technology & Innovation
  • Space debris is any human-made object that's currently orbiting Earth.
  • When space debris collides with other space debris, it can create thousands more pieces of junk, a dangerous phenomenon known as the Kessler syndrome.
  • Radical solutions are being proposed to fix the problem, some of which just might work. (See the video embedded toward the end of the article.)
Keep reading Show less

Looking for something? A team at MIT develop a robot that sees through walls

It uses radio waves to pinpoint items, even when they're hidden from view.

TORU YAMANAKA/AFP via Getty Images
Technology & Innovation
In recent years, robots have gained artificial vision, touch, and even smell.
Keep reading Show less
Quantcast