Consciousness: The 'ghost in the machine', or nothing special?

Science has not yet reached a consensus on the nature of consciousness.

An enormous sculpture of a person reaches out of a window.
As individuals, we feel that we know what consciousness is because we experience it daily.

It's that intimate sense of personal awareness we carry around with us, and the accompanying feeling of ownership and control over our thoughts, emotions and memories.

But science has not yet reached a consensus on the nature of consciousness – which has important implications for our belief in free will and our approach to the study of the human mind.

Beliefs about consciousness can be roughly divided into two camps. There are those who believe consciousness is like a ghost in the machinery of our brains, meriting special attention and study in its own right. And there are those, like us, who challenge this, pointing out that what we call consciousness is just another output generated backstage by our efficient neural machinery.

Over the past 30 years, neuroscientific research has been gradually moving away from the first camp. Using research from cognitive neuropsychology and hypnosis, our recent paper argues in favour of the latter position, even though this seems to undermine the compelling sense of authorship we have over our consciousness.

And we argue this isn't simply a topic of mere academic interest. Giving up on the ghost of consciousness to focus scientific endeavour on the machinery of our brains could be an essential step we need to take to better understand the human mind.

Is consciousness special?

Our experience of consciousness places us firmly in the driver's seat, with a sense that we're in control of our psychological world. But seen from an objective perspective, it's not at all clear that this is how consciousness functions, and there's still much debate about the fundamental nature of consciousness itself.

One reason for this is that many of us, including scientists, have adopted a dualist position on the nature of consciousness. Dualism is a philosophical view that draws a distinction between the mind and the body. Even though consciousness is generated by the brain – a part of the body – dualism claims that the mind is distinct from our physical features, and that consciousness cannot be understood through the study of the physical brain alone.

MIT's Alex Byrne explains the philosophical underpinnings of the dualist position.

It's easy to see why we believe this to be the case. While every other process in the human body ticks and pulses away without our oversight, there is something uniquely transcendental about our experience of consciousness. It's no surprise that we've treated consciousness as something special, distinct from the automatic systems that keep us breathing and digesting.

But a growing body of evidence from the field of cognitive neuroscience – which studies the biological processes underpinning cognition – challenges this view. Such studies draw attention to the fact that many psychological functions are generated and carried out entirely outside of our subjective awareness, by a range of fast, efficient non-conscious brain systems.

Consider, for example, how effortlessly we regain consciousness each morning after losing it the night before, or how, with no deliberate effort, we instantly recognise and understand shapes, colours, patterns and faces we encounter.

Consider that we don't actually experience how our perceptions are created, how our thoughts and sentences are produced, how we recall our memories or how we control our muscles to walk and our tongues to talk. Simply put, we don't generate or control our thoughts, feelings or actions – we just seem to become aware of them.

Becoming aware

The way we simply become aware of thoughts, feelings and the world around us suggests that our consciousness is generated and controlled backstage, by brain systems that we remain unaware of.

Our recent paper argues that consciousness involves no separate independent psychological process distinct from the brain itself, just as there's no additional function to digestion that exists separately from the physical workings of the gut.

While it's clear that both the experience and content of consciousness are real, we argue that, from a science explanation, they are epiphenomenal: secondary phenomena based on the machinations of the physical brain itself. In other words, our subjective experience of consciousness is real, but the functions of control and ownership we attribute to that experience are not.

Future study of the brain

Our position is neither obvious nor intuitive. But we contend that continuing to place consciousness in the driver's seat, above and beyond the physical workings of the brain, and attributing cognitive functions to it, risks confusion and delaying a better understanding of human psychology and behaviour.

To better align psychology with the rest of the natural sciences, and to be consistent with how we understand and study processes like digestion and respiration, we favour a perspective change. We should redirect our efforts to studying the non-conscious brain, and not the functions previously attributed to consciousness.

This doesn't of course exclude psychological investigation into the nature, origins and distribution of the belief in consciousness. But it does mean refocusing academic efforts on what happens beneath our awareness – where we argue the real neuro-psychological processes take place.

Our proposal feels personally and emotionally unsatisfying, but we believe it provides a future framework for the investigation of the human mind – one that looks at the brain's physical machinery rather than the ghost that we've traditionally called consciousness.The Conversation

Peter Halligan, Hon Professor of Neuropsychology, Cardiff University and David A Oakley, Emeritus Professor of Psychology, UCL

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Fast superhighway through the Solar System discovered

Scientists find routes using arches of chaos that can lead to much faster space travel.

Arches of chaos in space manifolds.

Courtesy: Nataša Todorović, Di Wu and Aaron Rosengren/Science Advances
Surprising Science
  • Researchers discovered a route through the Solar System that can allow for much faster spacecraft travel.
  • The path takes advantage of "arches of chaos" within space manifolds.
  • The scientists think this "celestial superhighway" can help humans get to the far reaches of the galaxy.
Keep reading Show less

Hack your brain for better problem solving

Tips from neuroscience and psychology can make you an expert thinker.

Credit: Olav Ahrens Røtne via Unsplash
Mind & Brain

This article was originally published on Big Think Edge.

Problem-solving skills are in demand. Every job posting lists them under must-have qualifications, and every job candidate claims to possess them, par excellence. Young entrepreneurs make solutions to social and global problems the heart of their mission statements, while parents and teachers push for curricula that encourage critical-thinking methods beyond solving for x.

It's ironic then that we continue to cultivate habits that stunt our ability to solve problems. Take, for example, the modern expectation to be "always on." We push ourselves to always be working, always be producing, always be parenting, always be promoting, always be socializing, always be in the know, always be available, always be doing. It's too much, and when things are always on all the time, we deplete the mental resources we need to truly engage with challenges.

If we're serious about solving problems, at work and in our personal lives, then we need to become more adept at tuning out so we can hone in.

Solve problems with others (occasionally)

A side effect of being always on is that we are rarely alone. We're connected through the ceaseless chirps of friends texting, social media buzzing, and colleagues pinging us for advice everywhere we go. In some ways, this is a boon. Modern technologies mediate near endless opportunities for collective learning and social problem-solving. Yet, such cooperation has its limits according to a 2018 study out of Harvard Business School.

In the study, participants were divided into three group types and asked to solve traveling salesman problems. The first group type had to work on the problems individually. The second group type exchanged notes after every round of problem-solving while the third collaborated after every three rounds.

The researchers found that lone problem-solvers invented a diverse range of potential solutions. However, their solutions varied wildly in quality, with some being true light bulb moments and others burnt-out duds. Conversely, the always-on group took advantage of their collective learning to tackle more complex problems more effectively. But social influence often led these groups to prematurely converge around a single idea and abandon potentially brilliant outliers.

It was the intermittent collaborators who landed on the Goldilocks strategy. By interacting less frequently, individual group members had more time to nurture their ideas so the best could shine. But when they gathered together, the group managed to improve the overall quality of their solutions thanks to collective learning.

In presenting their work, the study's authors question the value of always-on culture—especially our submissiveness to intrusions. "As we replace those sorts of intermittent cycles with always-on technologies, we might be diminishing our capacity to solve problems well," Ethan Bernstein, an associate professor at Harvard Business School and one of the study's authors, said in a press release.

These findings suggest we should schedule time to ruminate with our inner geniuses and consult the wisdom of the crowd. Rather than dividing our day between productivity output and group problem-solving sessions, we must also create space to focus on problems in isolation. This strategy provides the best of both worlds. It allows us to formulate our ideas before social pressure can push us to abandon them. But it doesn't preclude the group knowledge required to refine those ideas.

And the more distractions you can block out or turn off, the more working memory you'll have to direct at the problem.

A problem-solving booster

The next step is to dedicate time to not dealing with problems. Counterintuitive as it may seem, setting a troublesome task aside and letting your subconscious take a crack at it improves your conscious efforts later.

How should we fill these down hours? That's up to you, but research has shown time and again that healthier habits produce hardier minds. This is especially true regarding executive functions—a catchall term that includes a person's ability to self-control, meet goals, think flexibly, and, yes, solve problems.

"Exercisers outperform couch potatoes in tests that measure long-term memory, reasoning, attention, problem-solving, even so-called fluid-intelligence tasks. These tasks test the ability to reason quickly and think abstractly, improvising off previously learned material to solve a new problem. Essentially, exercise improves a whole host of abilities prized in the classroom and at work," writes John Medina, a developmental molecular biologist at the University of Washington.

One such study, published in the Frontiers in Neuroscience, analyzed data collected from more than 4,000 British adults. After controlling for variables, it found a bidirectional relationship between exercise and higher levels of executive function over time. Another study, this one published in the Frontiers in Aging Neuroscience, compared fitness data from 128 adults with brain scans taken as they were dual-tasking. Its findings showed regular exercisers sported more active executive regions.

Research also demonstrates a link between problem-solving, healthy diets, and proper sleep habits. Taken altogether, these lifestyle choices also help people manage their stress—which is known to impair problem-solving and creativity.

Of course, it can be difficult to untangle the complex relationship between cause and effect. Do people with healthy life habits naturally enjoy strong executive functions? Or do those habits bolster their mental fitness throughout their lives?

That's not an easy question to answer, but the Frontiers in Neuroscience study researchers hypothesize that it's a positive feedback loop. They posit that good sleep, nutritious food, and regular exercise fortify our executive functions. In turn, more potent executive decisions invigorate healthier life choices. And those healthy life choices—you see where this is going.

And while life choices are ultimately up to individuals, organizations have a supportive role to play. They can foster cultures that protect off-hours for relaxing, incentivize healthier habits with PTO, and prompt workers to take time for exercise beyond the usual keyboard calisthenics.

Nor would such initiatives be entirely selfless. They come with the added benefit of boosting a workforce's collective problem-solving capabilities.

Live and learn and learn some more

Another advantage of tuning out is the advantage to pursue life-long learning opportunities. People who engage in creative or problem-solving activities in their downtime—think playing music, puzzles, and even board games—show improved executive functions and mental acuity as they age. In other words, by learning to enjoy the act of problem-solving, you may enhance your ability to do so.

Similarly, lifelong learners are often interdisciplinary thinkers. By diving into various subjects, they can come to understand the nuances of different skills and bodies of knowledge to see when ideas from one field may provide a solution to a problem in another. That doesn't mean lifelong learners must become experts in every discipline. On the contrary, they are far more likely to understand where the limits of their knowledge lie. But those self-perceived horizons can also provide insight into where collaboration is necessary and when to follow someone else's lead.

In this way, lifelong learning can be key to problem-solving in both business and our personal lives. It pushes us toward self-improvement, gives us an understanding of how things work, hints at what's possible, and, above all, gives us permission to tune out and focus on what matters.

Cultivate lifelong learning at your organization with lessons 'For Business' from Big Think Edge. At Edge, more than 350 experts, academics, and entrepreneurs come together to teach essential skills in career development and lifelong learning. Heighten your problem-solving aptitude with lessons such as:

  • Make Room for Innovation: Key Characteristics of Innovative Companies, with Lisa Bodell, Founder and CEO, FutureThink, and Author, Why Simple Wins
  • Use Design Thinking: An Alternative Approach to Tackling the World's Greatest Problems, with Tim Brown, CEO and President, IDEO
  • The Power of Onlyness: Give Your People Permission to Co-Create the Future, with Nilofer Merchant, Marketing Expert and Author, The Power of Onlyness
  • How to Build a Talent-First Organization: Put People Before Numbers, with Ram Charan, Business Consultant
  • The Science of Successful Things: Case Studies in Product Hits and Flops, with Derek Thompson, Senior Editor, The Atlantic, and Author, Hit Makers

Request a demo today!

How AI learned to paint like Rembrandt

The Rijksmuseum employed an AI to repaint lost parts of Rembrandt's "The Night Watch." Here's how they did it.

Credit: Courtesy of Robert Erdmann / Rijksmuseum
Culture & Religion
  • In 1715, Amsterdam's Town Hall sliced off all four outer edges of Rembrandt's priceless masterpiece so that it would fit on a wall.
  • Neural networks were used to fill in the missing pieces.
  • An unprecedented collaboration between man and machine is now on display at the Rijksmuseum.
Keep reading Show less
Culture & Religion

Pragmatism: How Americans define truth

If something is "true," it needs to be shown to work in the real world.

Quantcast