Self-Motivation
David Goggins
Former Navy Seal
Career Development
Bryan Cranston
Actor
Critical Thinking
Liv Boeree
International Poker Champion
Emotional Intelligence
Amaryllis Fox
Former CIA Clandestine Operative
Management
Chris Hadfield
Retired Canadian Astronaut & Author
Learn
from the world's big
thinkers
Start Learning

Exponential Thinking

Exponential Thinking

The Matrix is real... and everyone here at NASA for the GSP has taken the red pill.  If you recall in the movie, Neo is startled, puzzled, and quite frankly scared when Morpheus first introduces him to the reality of reality. But here at Singularity University, the participants have hit the ground running, as if they’ve known this to be their fate all along.

During our introduction to the program, CEO Rob Nail (acting as Morpheus) explained the importance of having an open mind throughout the experience and embracing the unknown. He showed us a blurry black and white image (seen below).  Those vetted in cognitive neuroscience may have seen this optical illusion before, but initially most people in the crowd were not able to make sense of the noise on screen. The trick is to momentarily highlight the picture (a dog), which essentially implants the image into your mind. For all of eternity, when you go back to that same image you will clearly see the dog (that previously did not seem to be there). Nail explained how this mini-experiment physically rewires the brain, and that the students should expect much more dramatic shifts in their neural chemistry during the coming weeks.
Can you see the dog?

 


Throughout the first week we covered the basics of the 10 tracks that make up our curriculum. These areas of study include: Biotechnology & Bioinformatics, Medicine & Neuroscience, Nanotechnology & Digital Fabrication, Networks & Computing Systems, Energy & Environmental Systems, Space & Physical Sciences, Finance & Economics, Future Studies & Forecasting, Design, Entrepreneurship, and Policy, Law & Ethics.

During the program, there are two key principles that juxtapose everything we learn: exponential technologies are powerful, and this power can be harnessed for good. Next week is our Global Grand Challenge Week, and we will be exploring the world’s problems and potential solutions; but this week was all about adjusting our perspective to start thinking exponentially, and learn to intuit the law of accelerating returns, and its impact on all these different fields.

In doing so, it becomes apparent that thinking about the future is truly a brain teaser. Because we are products of billions of years of evolution, we are tuned to think linearly - but the fact is, these are exponential times - and our minds are lost in translation. In his book What Technology Wants, Kevin Kelly explains we are part of an evolving continuum, and through technology “Evolution has evolved its own evolvability.” It’s obvious things are moving fast in 2012 - but we are just reaching the knee of the curve... and explosive growth is right around the corner.



We have been learning a lot about the importance of timing within the context of our studies. In our sessions discussing convergence, we explore how one innovation can set off a series of events, potentially impacting many other innovations thereafter (as in the case of the iPhone or 3D Printer). Keeping this in mind, we embrace the notion that our conception of the future is limited to our current perspective of the world today, which - with any one breakthrough - could be totally transformed.

Life in exponential times.

 

But despite the limits we put on ourselves to forecast and predict the future, we have a pretty good understanding of what we can expect in the next couple of decades. One hour with Dr. Daniel Kraft and you will be in awe about what’s already possible in healthcare and medicine.  Raymond McCauley and Andrew Hessel are in the thick of the biotech and synbio world’s respectively, and can tell you with robust certainty that we will soon be writing the As, Gs, Ts, and Cs of DNA like we code 1s and 0s on our computers. These breakthroughs are happening at alarming rates, and after one week on campus I can only say the following quote is more true than I could have ever imagined...

the future is here, it’s just not evenly distributed.

For the remainder of the summer, the goal is to distribute the future so we can flourish in the present. Diving deeper into all of these fields of study will allow us to see what is possible right now, what will be possible in 5 years, and thereafter - this way we can prepare for and utilize the best of what’s available to us at any given time. There are impending paradigm shifts that will no doubt rock our world; We need to be prepared for what’s to come, and that starts with a shift in perspective. It’s time to take the red pill... It’s time to start thinking exponentially.

Radical innovation: Unlocking the future of human invention

Ready to see the future? Nanotronics CEO Matthew Putman talks innovation and the solutions that are right under our noses.

Big Think LIVE

Innovation in manufacturing has crawled since the 1950s. That's about to speed up.

Keep reading Show less

Your body’s full of stuff you no longer need. Here's a list.

Evolution doesn't clean up after itself very well.

Image source: Ernst Haeckel
Surprising Science
  • An evolutionary biologist got people swapping ideas about our lingering vestigia.
  • Basically, this is the stuff that served some evolutionary purpose at some point, but now is kind of, well, extra.
  • Here are the six traits that inaugurated the fun.
Keep reading Show less

Quantum particles timed as they tunnel through a solid

A clever new study definitively measures how long it takes for quantum particles to pass through a barrier.

Image source: carlos castilla/Shutterstock
  • Quantum particles can tunnel through seemingly impassable barriers, popping up on the other side.
  • Quantum tunneling is not a new discovery, but there's a lot that's unknown about it.
  • By super-cooling rubidium particles, researchers use their spinning as a magnetic timer.

When it comes to weird behavior, there's nothing quite like the quantum world. On top of that world-class head scratcher entanglement, there's also quantum tunneling — the mysterious process in which particles somehow find their way through what should be impenetrable barriers.

Exactly why or even how quantum tunneling happens is unknown: Do particles just pop over to the other side instantaneously in the same way entangled particles interact? Or do they progressively tunnel through? Previous research has been conflicting.

That quantum tunneling occurs has not been a matter of debate since it was discovered in the 1920s. When IBM famously wrote their name on a nickel substrate using 35 xenon atoms, they used a scanning tunneling microscope to see what they were doing. And tunnel diodes are fast-switching semiconductors that derive their negative resistance from quantum tunneling.

Nonetheless, "Quantum tunneling is one of the most puzzling of quantum phenomena," says Aephraim Steinberg of the Quantum Information Science Program at Canadian Institute for Advanced Research in Toronto to Live Science. Speaking with Scientific American he explains, "It's as though the particle dug a tunnel under the hill and appeared on the other."

Steinberg is a co-author of a study just published in the journal Nature that presents a series of clever experiments that allowed researchers to measure the amount of time it takes tunneling particles to find their way through a barrier. "And it is fantastic that we're now able to actually study it in this way."

Frozen rubidium atoms

Image source: Viktoriia Debopre/Shutterstock/Big Think

One of the difficulties in ascertaining the time it takes for tunneling to occur is knowing precisely when it's begun and when it's finished. The authors of the new study solved this by devising a system based on particles' precession.

Subatomic particles all have magnetic qualities, and they spin, or "precess," like a top when they encounter an external magnetic field. With this in mind, the authors of the study decided to construct a barrier with a magnetic field, causing any particles passing through it to precess as they did so. They wouldn't precess before entering the field or after, so by observing and timing the duration of the particles' precession, the researchers could definitively identify the length of time it took them to tunnel through the barrier.

To construct their barrier, the scientists cooled about 8,000 rubidium atoms to a billionth of a degree above absolute zero. In this state, they form a Bose-Einstein condensate, AKA the fifth-known form of matter. When in this state, atoms slow down and can be clumped together rather than flying around independently at high speeds. (We've written before about a Bose-Einstein experiment in space.)

Using a laser, the researchers pusehd about 2,000 rubidium atoms together in a barrier about 1.3 micrometers thick, endowing it with a pseudo-magnetic field. Compared to a single rubidium atom, this is a very thick wall, comparable to a half a mile deep if you yourself were a foot thick.

With the wall prepared, a second laser nudged individual rubidium atoms toward it. Most of the atoms simply bounced off the barrier, but about 3% of them went right through as hoped. Precise measurement of their precession produced the result: It took them 0.61 milliseconds to get through.

Reactions to the study

Scientists not involved in the research find its results compelling.

"This is a beautiful experiment," according to Igor Litvinyuk of Griffith University in Australia. "Just to do it is a heroic effort." Drew Alton of Augustana University, in South Dakota tells Live Science, "The experiment is a breathtaking technical achievement."

What makes the researchers' results so exceptional is their unambiguity. Says Chad Orzel at Union College in New York, "Their experiment is ingeniously constructed to make it difficult to interpret as anything other than what they say." He calls the research, "one of the best examples you'll see of a thought experiment made real." Litvinyuk agrees: "I see no holes in this."

As for the researchers themselves, enhancements to their experimental apparatus are underway to help them learn more. "We're working on a new measurement where we make the barrier thicker," Steinberg said. In addition, there's also the interesting question of whether or not that 0.61-millisecond trip occurs at a steady rate: "It will be very interesting to see if the atoms' speed is constant or not."

Self-driving cars to race for $1.5 million at Indianapolis Motor Speedway ​

So far, 30 student teams have entered the Indy Autonomous Challenge, scheduled for October 2021.

Illustration of cockpit of a self-driving car

Indy Autonomous Challenge
Technology & Innovation
  • The Indy Autonomous Challenge will task student teams with developing self-driving software for race cars.
  • The competition requires cars to complete 20 laps within 25 minutes, meaning cars would need to average about 110 mph.
  • The organizers say they hope to advance the field of driverless cars and "inspire the next generation of STEM talent."
Keep reading Show less
Mind & Brain

The dangers of the chemical imbalance theory of depression

A new Harvard study finds that the language you use affects patient outcome.

Scroll down to load more…
Quantcast