Language Pragmatics: Why We Can't Talk to Computers

Speech recognition technology continues to fascinate language and cognitive science researchers, and Apple’s introduction of the Siri voice assistant program in its recent iPhone 4S was heralded by many as a great leap toward realizing the dream of a computer you can talk to. Fast-forward half a year later and, while Siri has proved to be practically useful and sometimes impressively accurate for dictation, the world has not been turned upside down. A quick Google search for “Siri fail” will provide you with the often unintentionally funny attempts by Apple’s voice recognition service to answer abstract questions or transcribe uncommon phrases.


But in a day and age when computers can win at Jeopardy and chess programs can consistently defeat the best human players, why hasn’t voice technology reached a similar plateau of mastery? Here is cognitive scientist, popular author, and Floating University professor Steven Pinker exploring the issue in a clip from his lecture “Say What? Linguistics as a Window to Understanding the Brain.”


But Siri works pretty well much of the time, right? Interestingly, Apple approached the voice recognition game using an framework that is about as far from how humans understand speech as you can get. Every time you speak to Siri, your iPhone connects to a cloud service, according to a Smart Planet article by Andrew Nusca, and the following takes place:

The server compares your speech against a statistical model to estimate, based on the sounds you spoke and the order in which you spoke them, what letters might constitute it. (At the same time, the local recognizer compares your speech to an abridged version of that statistical model.) For both, the highest-probability estimates get the go-ahead.

Based on these opinions, your speech — now understood as a series of vowels and consonants — is then run through a language model, which estimates the words that your speech is comprised of. Given a sufficient level of confidence, the computer then creates a candidate list of interpretations for what the sequence of words in your speech might mean.

In this sense, Siri doesn’t really “understand” anything said to it, it simply uses a constantly expanding probability model to attach combinations of letters to the sounds you’re saying. And once it has computed the most likely identity of your words, it cross checks them against the server database of successful answers to similar combinations of words and provides you with a probable answer. This is a system of speech recognition that sidesteps the pragmatics question discussed by Pinker by employing a huge vocabulary and a real-time cloud-based feedback database. And Siri’s trademark cheekiness? Apple has thousands of writers employed inputting phrases and responses manually into the Siri cloud, continually building out its “vocabulary” while relying on statistics for the context.

Does this constitute true speech recognition, or is this just a more robust version of old-time AOL chat bots? If this is the way that speech recognition technology will evolve in the future, do you think that it will cross a database threshold so as to be indistinguishable from true speech recognition, even if there’s no pragmatic “ghost in the machine,” as it were? Or will computers never be able to truly "learn" language?

Visit The Floating University to learn more about our approach to disrupting higher education, or check out Steven Pinker's eSeminar “Say What? Linguistics as a Window to Understanding the Brain.”

Stand up against religious discrimination – even if it’s not your religion

As religious diversity increases in the United States, we must learn to channel religious identity into interfaith cooperation.

Sponsored by Charles Koch Foundation
  • Religious diversity is the norm in American life, and that diversity is only increasing, says Eboo Patel.
  • Using the most painful moment of his life as a lesson, Eboo Patel explains why it's crucial to be positive and proactive about engaging religious identity towards interfaith cooperation.
  • The opinions expressed in this video do not necessarily reflect the views of the Charles Koch Foundation, which encourages the expression of diverse viewpoints within a culture of civil discourse and mutual respect.
Keep reading Show less

NASA's idea for making food from thin air just became a reality — it could feed billions

Here's why you might eat greenhouse gases in the future.

Jordane Mathieu on Unsplash
Technology & Innovation
  • The company's protein powder, "Solein," is similar in form and taste to wheat flour.
  • Based on a concept developed by NASA, the product has wide potential as a carbon-neutral source of protein.
  • The man-made "meat" industry just got even more interesting.
Keep reading Show less

Where the evidence of fake news is really hiding

When it comes to sniffing out whether a source is credible or not, even journalists can sometimes take the wrong approach.

Sponsored by Charles Koch Foundation
  • We all think that we're competent consumers of news media, but the research shows that even journalists struggle with identifying fact from fiction.
  • When judging whether a piece of media is true or not, most of us focus too much on the source itself. Knowledge has a context, and it's important to look at that context when trying to validate a source.
  • The opinions expressed in this video do not necessarily reflect the views of the Charles Koch Foundation, which encourages the expression of diverse viewpoints within a culture of civil discourse and mutual respect.
Keep reading Show less