Big ideas.
Once a week.
Subscribe to our weekly newsletter.

Accelerating technological change will define how efficiently we use energy, not how much.
The accelerating change of technology we use commercially and personally is dramatically increasing the global demand for electric power. As consumers, we’re gulping power at an alarming rate, from air conditioning systems, heating systems, household appliances, and all forms of home entertainment devices to cloud computing, computers, and consumer electronics. Over the past few years, we’re also plugging in electric vehicles at an ever increasing rate. And let’s not forget the industrial power needed to churn out all these products, as well as keep the other wheels of industry turning. In fact, global electricity demand has been projected to nearly double from the year 2010 to 2030.
It’s clear we’re already close to consuming more electricity than we can generate or distribute, as manifest through the rolling black and brown outs frequently seen during summer months where peak power demand is highest. The problem is we’re adding more demand for electricity (from everything mentioned above and more) than we’re adding capacity to supply it. With that said, we still need to stay cool and to turn on lights to see at night … and we’re certainly not going to turn off our home theater and gaming systems.
So what’s the answer? Expand power generation to meet growing demand? Not so fast. Investment in electric power generation and distribution is a slow, long-term proposition, and therefore has trailed well below the increase in GDP in most developed countries. In other words, no one has the appetite (or the capital) to build enough power plants and expand the grid to meet the rising demand for electricity.
A quick point of fact: Power generation—and the grid to distribute it—has to be scaled to meet peak demand. On average, power grids operate at around 80 percent capacity, so they’re ready to cover peak demand when those hot summer days roll around. If demand rises above that peak capacity, we experience those black and brown outs.
Additionally, 75 percent of the electricity generating capacity in the United States depends on the combustion of fossil fuels. This raises a multitude of other concerns, perhaps foremost that dependence on fossil fuels for electricity is causing severe environmental and health hazards, including large emissions of toxic air pollutants and greenhouse gases.
Over the past few years, thanks to technology developments such as fracking, which were impossible just a decade ago, we can now extract natural gas in very large quantities, and that has put the United States in a position of being an exporter of energy. The good news is that natural gas is far less polluting than other fossil fuels, such as coal, and the U.S. has very large reserves. On the other hand, the United States does not have an infrastructure for capitalizing on natural gas powered vehicles, and natural gas is a fossil fuel and does have harmful emissions, even if less than the others.
When we look at renewable energy sources such as wind, solar, and waves, great strides have been taken, but until we find a way to store electricity for use at a later time, these will help but not be game changing. The good news here is that there is a technology that is already changing the game.
What if we could increase energy production without adding new capacity? What if we could use the power we already generate more efficiently, rather than have to dramatically expand power generation? Enter the work that is being done to enable smart grids, smart homes, and smart cities to help us accomplish this. But will peak power demand modeling and technology that turns lights off in empty rooms be enough? Probably not for some time. That’s where promising energy storage technology comes in as a key change accelerator to help us use the electrical power we have now more efficiently.
One of the companies leading the way is Maxwell Technologies in San Diego, California. They have developed and are manufacturing one of the most promising clean-energy power storage technologies available: ultracapacitors, which use an electro-static field to quickly capture energy and then rapidly release it when needed. Conventional batteries and advanced lithium-ion batteries that rely on a chemical reaction cannot efficiently do this because they charge slowly and discharge slowly. When batteries are asked to charge and discharge quickly—which is the case in many applications today—they begin to fail and ultimately need to be replaced.
Ultracapacitors are being incorporated (where batteries cannot) into renewable energy power generation from solar, wind, and waves to improve efficiency and reliability. Because there are many disruptions in renewable energy output from clouds, wind fluctuations, and tides that last from a few seconds to a few minutes, output can swing as much as 50 percent at any time. This variability in power supply presents issues with power grid stability, causing the grid to disconnect from the renewable energy source.
The unique quick charge/discharge ability of ultracapacitors allows renewable energy installations to quickly store power and then deliver it back to the power grid “firming” output capacity and “ride through” during short-term disruptions. This increases renewable energy utilization by 30 – 50 percent so the power grid doesn’t need to be built to such a large scale (at an incremental cost) as demand for electrical power grows. Additionally, we could further increase our use of clean energy and decrease reliance on fossil fuels for power generation.
From a very broad perspective, this is a major example of how ultracapacitors can help us use the energy we already generate more efficiently. But what about places off the grid where we waste energy every day? How about planes, trains, automobiles, trucks, and busses?
Regenerative braking systems in electric and hybrid vehicles are being used to generate and quickly store electrical energy when brakes are applied, then rapidly release it for acceleration. Conventional friction-based braking systems simply lose all this kinetic energy to heat. Ultracapacitors are being used to quickly capture and release this energy to improve fuel economy and extend battery life. Regenerative breaking systems provide an average of 7 percent fuel efficiently and would save 12 million gallons of fuel in the U.S. each year.
Conventional internal-combustion vehicles are incorporating start-stop systems that kill the engine at stoplights and stop signs, and then restart it when the accelerator is applied. Ultracapacitors are being designed into these vehicles to stabilize starter systems, electrical systems, power steering, and onboard electronics. These start-stop systems improve fuel efficiency by up to 15 percent. In the U.S. alone we could save 25.5 million gallons of fuel annually if every conventional vehicle had this type of system. Image how much energy we could save and utilize if every vehicle on the planet had a start-stop system.
Finally, let’s think at the micro-level. Small ultracapacitors can be combined with batteries in laptops, tablets, smart phones, and electronic toys to use electric power more efficiently. Unlike ultracapacitors, batteries begin to degrade when they are tasked to quickly charge and discharge, but they are great sources of long-term power. Because ultracapacitors can quickly be charged and discharged up to a million times without loss of performance, they are ideal for providing the bursts of power required by today’s electronic devices, helping them perform better and batteries last longer.
There are a multitude of other applications where ultracapacitors can—and are starting to—help us use the power we’re already generating more efficiently, instead of simply generating more power. Clean-energy ultracapacitors are a change accelerating technology that will enable energy’s future and not inhibit the dizzying rate of technological, commercial, and social change we’ve come to expect and rely on.
Meanwhile, a question: Are there obvious or obscure places you can imagine where innovative power storage technology could help us use the electrical power we have now more efficiently?
###
DANIEL BURRUS is considered one of the world’s leading technology forecasters and innovation experts, and is the founder and CEO of Burrus Research, a research and consulting firm that monitors global advancements in technology driven trends to help clients understand how technological, social and business forces are converging to create enormous untapped opportunities. He is the author of six books including The New York Times best seller Flash Foresight.
‘Time is elastic’: Why time passes faster atop a mountain than at sea level
The idea of 'absolute time' is an illusion. Physics and subjective experience reveal why.
- Since Einstein posited his theory of general relativity, we've understood that gravity has the power to warp space and time.
- This "time dilation" effect occurs even at small levels.
- Outside of physics, we experience distortions in how we perceive time — sometimes to a startling extent.
Physics without time
<p>In his book "The Order of Time," Italian theoretical physicist Carlo Rovelli suggests that our perception of time — our sense that time is forever flowing forward — could be a highly subjective projection. After all, when you look at reality on the smallest scale (using equations of quantum gravity, at least), time vanishes.</p><p style="margin-left: 20px;">"If I observe the microscopic state of things," writes Rovelli, "then the difference between past and future vanishes … in the elementary grammar of things, there is no distinction between 'cause' and 'effect.'"</p><p>So, why do we perceive time as flowing <em>forward</em>? Rovelli notes that, although time disappears on extremely small scales, we still obviously perceive events occur sequentially in reality. In other words, we observe entropy: Order changing into disorder; an egg cracking and getting scrambled.</p><p>Rovelli says key aspects of time are described by the second law of thermodynamics, which states that heat always passes from hot to cold. This is a one-way street. For example, an ice cube melts into a hot cup of tea, never the reverse. Rovelli suggests a similar phenomenon might explain why we're only able to perceive the past and not the future.</p><p style="margin-left: 20px;">"Any time the future is definitely distinguishable from the past, there is something like heat involved," Rovelli wrote for the <a href="https://www.ft.com/content/ce6ef7b8-429a-11e8-93cf-67ac3a6482fd" target="_blank"><em>Financial Times</em></a>. "Thermodynamics traces the direction of time to something called the 'low entropy of the past', a still mysterious phenomenon on which discussions rage."</p>The strange subjectivity of time
<p>Time moves differently atop a mountain than it does on a beach. But you don't need to travel any distance at all to experience strange distortions in your perception of time. In moments of life-or-death fear, for example, your brain would release large amounts of adrenaline, which would speed up your internal clock, causing you to perceive the outside world as moving slowly.<br></p><p>Another common distortion occurs when we focus our attention in particular ways.</p><p style="margin-left: 20px;">"If you're thinking about how time is <em>currently</em> passing by, the biggest factor influencing your time perception is attention," Aaron Sackett, associate professor of marketing at the University of St. Thomas, told <em><a href="https://gizmodo.com/why-does-time-slow-down-and-speed-up-1840133782" target="_blank">Gizmodo</a></em>.<em> "</em>The more attention you give to the passage of time, the slower it tends to go. As you become distracted from time's passing—perhaps by something interesting happening nearby, or a good daydreaming session—you're more likely to lose track of time, giving you the feeling that it's slipping by more quickly than before. "Time flies when you're having fun," they say, but really, it's more like "time flies when you're thinking about other things." That's why time will also often fly by when you're definitely <em>not</em> having fun—like when you're having a heated argument or are terrified about an upcoming presentation."</p><p>One of the most mysterious ways people experience time-perception distortions is through psychedelic drugs. In an interview with <a href="https://www.theguardian.com/books/2018/apr/14/carlo-rovelli-exploding-commonsense-notions-order-of-time-interview" target="_blank"><em>The Guardian</em></a>, Rovelli described a time he experimented with LSD.</p><p style="margin-left: 20px;">"It was an extraordinarily strong experience that touched me also intellectually," he said. "Among the strange phenomena was the sense of time stopping. Things were happening in my mind but the clock was not going ahead; the flow of time was not passing any more. It was a total subversion of the structure of reality."<br></p><p>It seems few scientists or philosophers believe time is completely an illusion.</p><p style="margin-left: 20px;">"What we call <em>time</em> is a rich, stratified concept; it has many layers," Rovelli told <em><a href="https://physicstoday.scitation.org/do/10.1063/PT.6.4.20190219a/full/" target="_blank">Physics Today</a>.</em> "Some of time's layers apply only at limited scales within limited domains. This does not make them illusions."</p>What <em>is</em> an illusion is the idea that time flows at an absolute rate. The river of time might be flowing forever forward, but it moves at different speeds, between people, and even within your own mind.The cost of world peace? It's much less than the price of war
The world's 10 most affected countries are spending up to 59% of their GDP on the effects of violence.
- Conflict and violence cost the world more than $14 trillion a year.
- That's the equivalent of $5 a day for every person on the planet.
- Research shows that peace brings prosperity, lower inflation and more jobs.
- Just a 2% reduction in conflict would free up as much money as the global aid budget.
- Report urges governments to improve peacefulness, especially amid COVID-19.
The evolution of modern rainforests began with the dinosaur-killing asteroid
The lush biodiversity of South America's rainforests is rooted in one of the most cataclysmic events that ever struck Earth.
Velociraptor Dinosaur in the Rainforest
- One especially mysterious thing about the asteroid impact, which killed the dinosaurs, is how it transformed Earth's tropical rainforests.
- A recent study analyzed ancient fossils collected in modern-day Colombia to determine how tropical rainforests changed after the bolide impact.
- The results highlight how nature is able to recover from cataclysmic events, though it may take millions of years.
New study determines how many mothers have lost a child by country
Global inequality takes many forms, including who has lost the most children
