Big ideas.
Once a week.
Subscribe to our weekly newsletter.
Researchers read centuries-old sealed letter without ever opening it
The key? A computational flattening algorithm.

An international team of scholars has read an unopened letter from early modern Europe — without breaking its seal or damaging it in any way — using an automated computational flattening algorithm.
The team, including MIT Libraries and Computer Science and Artificial Intelligence Laboratory (CSAIL) researchers and an MIT student and alumna, published their findings today in a Nature Communications article titled, "Unlocking history through automated virtual unfolding of sealed documents imaged by X-ray microtomography."
The senders of these letters had closed them using "letterlocking," the historical process of folding and securing a flat sheet of paper to become its own envelope. Jana Dambrogio, the Thomas F. Peterson Conservator at MIT Libraries, developed letterlocking as a field of study with Daniel Starza Smith, a lecturer in early modern English literature at King's College London, and the Unlocking History research team. Since the papers' folds, tucks, and slits are themselves valuable evidence for historians and conservators, being able to examine the letters' contents without irrevocably damaging them is a major advancement in the study of historic documents.
"Letterlocking was an everyday activity for centuries, across cultures, borders, and social classes," explains Dambrogio. "It plays an integral role in the history of secrecy systems as the missing link between physical communications security techniques from the ancient world and modern digital cryptography. This research takes us right into the heart of a locked letter."
This breakthrough technique was the result of an international and interdisciplinary collaboration between conservators, historians, engineers, imaging experts, and other scholars. "The power of collaboration is that we can combine our different interests and tools to solve bigger problems," says Martin Demaine, artist-in-residence in MIT's Department of Electrical Engineering and Computer Science (EECS) and a member of the research team.
The algorithm that makes the virtual unfolding possible was developed by Amanda Ghassaei SM '17 and Holly Jackson, an undergraduate student in electrical engineering and computer science and a participant in MIT's Undergraduate Research Opportunity Program (UROP), both working at the Center for Bits and Atoms. The virtual unfolding code is openly available on GitHub.
"When we got back the first scans of the letter packets, we were instantly hooked," says Ghassaei. "Sealed letters are very intriguing objects, and these examples are particularly interesting because of the special attention paid to securing them shut."
Secrets revealed
"We're X-raying history," says team member David Mills, X-ray microtomography facilities manager at Queen Mary University of London. Mills, together with Graham Davis, professor of 3D X-ray imaging at Queen Mary, used machines specially designed for use in dentistry to scan unopened "locked" letters from the 17th century. This resulted in high-resolution volumetric scans, produced by high-contrast time delay integration X-ray microtomography.
"Who would have thought that a scanner designed to look at teeth would take us so far?" says Davis.
Computational flattening algorithms were then applied to the scans of the letters. This has been done successfully before with scrolls, books, and documents with one or two folds. The intricate folding configurations of the "locked" letters, however, posed unique technical challenges.
"The algorithm ends up doing an impressive job at separating the layers of paper, despite their extreme thinness and tiny gaps between them, sometimes less than the resolution of the scan," says Erik Demaine, professor of computer science at MIT and an expert in computational origami. "We weren't sure it would be possible."
The team's approach utilizes a fully 3D geometric analysis that requires no prior information about the number or types of folds or letters in a letter packet. The virtual unfolding generates 2D and 3D reconstructions of the letters in both folded and flat states, plus images of the letters' writing surfaces and crease patterns.
"One of coolest technical contributions of the work is a technique that explores the folded and flattened representations of a letter simultaneously," says Holly Jackson. "Our new technology enables conservators to preserve a letter's internal engineering, while still giving historians insight into the lives of the senders and recipients."
This virtual unfolding technique was used to reveal the contents of a letter dated July 31, 1697. It contains a request from Jacques Sennacques to his cousin Pierre Le Pers, a French merchant in The Hague, for a certified copy of a death notice of one Daniel Le Pers. The letter comes from the Brienne Collection, a European postmaster's trunk preserving 300-year-old undelivered mail, which has provided a rare opportunity for researchers to study sealed locked letters.
"The trunk is a unique time capsule," says David van der Linden, assistant professor in early modern history, Radboud University Nijmegen. "It preserves precious insights into the lives of thousands of people from all levels of society, including itinerant musicians, diplomats, and religious refugees. As historians, we regularly explore the lives of people who lived in the past, but to read an intimate story that has never seen the light of day — and never even reached its recipient — is truly extraordinary."
Advancing a new field
In the Nature Communications article, the team also unveils the first systematization of letterlocking techniques. After studying 250,000 historical letters, they devised a chart of categories and formats that assigns letter examples a security score. Understanding these security techniques of historical correspondence means archival collections can be conserved in ways that protect small but important material details, such as slits, locks, and creases.
"Sometimes the past resists scrutiny," explains Daniel Starza Smith. "We could simply have cut these letters open, but instead we took the time to study them for their hidden, secret, and inaccessible qualities. We've learned that letters can be a lot more revealing when they are left unopened."
The research team hopes to make a study collection of letterlocking examples available to scholars and students from a range of disciplines. The virtual unfolding algorithm could also have broad applications: Because it can handle flat, curved, and sharply folded materials, it can be used on many types of historical texts, including letters, scrolls, and books.
"What we have achieved is more than simply opening the unopenable, and reading the unreadable," says Nadine Akkerman, reader in early modern English literature at Leiden University. "We have shown how truly interdisciplinary work breaks down boundaries to investigate what neither humanities nor the sciences can hope to understand alone."
Computational tools promise to accelerate research on letterlocking as well as reveal new historical evidence. Thanks to this research, adds Rebekah Ahrendt, associate professor of musicology at Utrecht University, "we can now imagine new affective histories that physically connect the past and the present, the human and the nonhuman, the tangible and the digital."
The research team includes Jana Dambrogio, Thomas F. Peterson Conservator, MIT Libraries; Amanda Ghassaei, research engineer at Adobe Research; Daniel Starza Smith, lecturer in early modern English literature at King's College London; Holly Jackson, undergraduate student at MIT; Erik Demaine, professor in EECS; Martin Demaine, robotics engineer in CSAIL and Angelika and Barton Weller Artist-in-Residence in EECS; Graham Davis and David Mills, Queen Mary University of London's Institute of Dentistry; Rebekah Ahrendt, associate professor of musicology at Utrecht University; Nadine Akkerman, reader in early modern English literature at Leiden University; and David van der Linden, assistant professor in early modern history at Radboud University Nijmegen.
This research was supported in part by grants from the Seaver Foundation, the Delmas Foundation, the British Academy, and the Nederlandse Organisatie voor Wetenschappelijk Onderzoek.
Reprinted with permission of MIT News. Read the original article.
Your body’s full of stuff you no longer need. Here's a list.
Evolution doesn't clean up after itself very well.
- An evolutionary biologist got people swapping ideas about our lingering vestigia.
- Basically, this is the stuff that served some evolutionary purpose at some point, but now is kind of, well, extra.
- Here are the six traits that inaugurated the fun.
The plica semilunaris
<img class="rm-lazyloadable-image rm-shortcode" type="lazy-image" data-runner-src="https://assets.rebelmouse.io/eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJpbWFnZSI6Imh0dHBzOi8vYXNzZXRzLnJibC5tcy8xOTA5NjgwMS9vcmlnaW4ucG5nIiwiZXhwaXJlc19hdCI6MTY3NDg5NTg1NX0.kdBYMvaEzvCiJjcLEPgnjII_KVtT9RMEwJFuXB68D8Q/img.png?width=980" id="59914" width="429" height="350" data-rm-shortcode-id="b11e4be64c5e1f58bf4417d8548bedc7" data-rm-shortcode-name="rebelmouse-image" />The human eye in alarming detail. Image source: Henry Gray / Wikimedia commons
<p>At the inner corner of our eyes, closest to the nasal ridge, is that little pink thing, which is probably what most of us call it, called the caruncula. Next to it is the plica semilunairs, and it's what's left of a third eyelid that used to — ready for this? — blink horizontally. It's supposed to have offered protection for our eyes, and some birds, reptiles, and fish have such a thing.</p>Palmaris longus
<img class="rm-lazyloadable-image rm-shortcode" type="lazy-image" data-runner-src="https://assets.rebelmouse.io/eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJpbWFnZSI6Imh0dHBzOi8vYXNzZXRzLnJibC5tcy8xOTA5NjgwNy9vcmlnaW4uanBnIiwiZXhwaXJlc19hdCI6MTYzMzQ1NjUwMn0.dVor41tO_NeLkGY9Tx46SwqhSVaA8HZQmQAp532xLxA/img.jpg?width=980" id="879be" width="1920" height="2560" data-rm-shortcode-id="4089a32ea9fbb1a0281db14332583ccd" data-rm-shortcode-name="rebelmouse-image" />Palmaris longus muscle. Image source: Wikimedia commons
<p> We don't have much need these days, at least most of us, to navigate from tree branch to tree branch. Still, about 86 percent of us still have the wrist muscle that used to help us do it. To see if you have it, place the back of you hand on a flat surface and touch your thumb to your pinkie. If you have a muscle that becomes visible in your wrist, that's the palmaris longus. If you don't, consider yourself more evolved (just joking).</p>Darwin's tubercle
<img class="rm-lazyloadable-image rm-shortcode" type="lazy-image" data-runner-src="https://assets.rebelmouse.io/eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJpbWFnZSI6Imh0dHBzOi8vYXNzZXRzLnJibC5tcy8xOTA5NjgxMi9vcmlnaW4uanBnIiwiZXhwaXJlc19hdCI6MTY0ODUyNjA1MX0.8RuU-OSRf92wQpaPPJtvFreOVvicEwn39_jnbegiUOk/img.jpg?width=980" id="687a0" width="819" height="1072" data-rm-shortcode-id="ff5edf0a698e0681d11efde1d7872958" data-rm-shortcode-name="rebelmouse-image" />Darwin's tubercle. Image source: Wikimedia commons
<p> Yes, maybe the shell of you ear does feel like a dried apricot. Maybe not. But there's a ridge in that swirly structure that's a muscle which allowed us, at one point, to move our ears in the direction of interesting sounds. These days, we just turn our heads, but there it is.</p>Goosebumps
<img class="rm-lazyloadable-image rm-shortcode" type="lazy-image" data-runner-src="https://assets.rebelmouse.io/eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJpbWFnZSI6Imh0dHBzOi8vYXNzZXRzLnJibC5tcy8xOTA5NzMxNC9vcmlnaW4uanBnIiwiZXhwaXJlc19hdCI6MTYyNzEyNTc2Nn0.aVMa5fsKgiabW5vkr7BOvm2pmNKbLJF_50bwvd4aRo4/img.jpg?width=980" id="d8420" width="1440" height="960" data-rm-shortcode-id="8827e55511c8c3aed8c36d21b6541dbd" data-rm-shortcode-name="rebelmouse-image" />Goosebumps. Photo credit: Tyler Olson via Shutterstock
<p>It's not entirely clear what purpose made goosebumps worth retaining evolutionarily, but there are two circumstances in which they appear: fear and cold. For fear, they may have been a way of making body hair stand up so we'd appear larger to predators, much the way a cat's tail puffs up — numerous creatures exaggerate their size when threatened. In the cold, they may have trapped additional heat for warmth.</p>Tailbone
<img class="rm-lazyloadable-image rm-shortcode" type="lazy-image" data-runner-src="https://assets.rebelmouse.io/eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJpbWFnZSI6Imh0dHBzOi8vYXNzZXRzLnJibC5tcy8xOTA5NzMxNi9vcmlnaW4uanBnIiwiZXhwaXJlc19hdCI6MTY3MzQwMjc3N30.nBGAfc_O9sgyK_lOUo_MHzP1vK-9kJpohLlj9ax1P8s/img.jpg?width=980" id="9a2f6" width="1440" height="1440" data-rm-shortcode-id="4fe28368d2ed6a91a4c928d4254cc02a" data-rm-shortcode-name="rebelmouse-image" />Coccyx.
Image source: Decade3d-anatomy online via Shutterstock
<p>Way back, we had tails that probably helped us balance upright, and was useful moving through trees. We still have the stump of one when we're embryos, from 4–6 weeks, and then the body mostly dissolves it during Weeks 6–8. What's left is the coccyx.</p>The palmar grasp reflex
<img class="rm-lazyloadable-image rm-shortcode" type="lazy-image" data-runner-src="https://assets.rebelmouse.io/eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJpbWFnZSI6Imh0dHBzOi8vYXNzZXRzLnJibC5tcy8xOTA5NzMyMC9vcmlnaW4uanBnIiwiZXhwaXJlc19hdCI6MTYzNjY0MDY5NX0.OSwReKLmNZkbAS12-AvRaxgCM7zyukjQUaG4vmhxTtM/img.jpg?width=980" id="8804c" width="1440" height="960" data-rm-shortcode-id="67542ee1c5a85807b0a7e63399e44575" data-rm-shortcode-name="rebelmouse-image" />Palmar reflex activated! Photo credit: Raul Luna on Flickr
<p> You've probably seen how non-human primate babies grab onto their parents' hands to be carried around. We used to do this, too. So still, if you touch your finger to a baby's palm, or if you touch the sole of their foot, the palmar grasp reflex will cause the hand or foot to try and close around your finger.</p>Other people's suggestions
<p>Amir's followers dove right in, offering both cool and questionable additions to her list. </p>Fangs?
<blockquote class="twitter-tweet" data-conversation="none" data-lang="en"><p lang="en" dir="ltr">Lower mouth plate behind your teeth. Some have protruding bone under the skin which is a throw back to large fangs. Almost like an upsidedown Sabre Tooth.</p>— neil crud (@neilcrud66) <a href="https://twitter.com/neilcrud66/status/1085606005000601600?ref_src=twsrc%5Etfw">January 16, 2019</a></blockquote> <script async src="https://platform.twitter.com/widgets.js" charset="utf-8"></script>Hiccups
<blockquote class="twitter-tweet" data-conversation="none" data-lang="en"><p lang="en" dir="ltr">Sure: <a href="https://t.co/DjMZB1XidG">https://t.co/DjMZB1XidG</a></p>— Stephen Roughley (@SteBobRoughley) <a href="https://twitter.com/SteBobRoughley/status/1085529239556968448?ref_src=twsrc%5Etfw">January 16, 2019</a></blockquote> <script async src="https://platform.twitter.com/widgets.js" charset="utf-8"></script>Hypnic jerk as you fall asleep
<blockquote class="twitter-tweet" data-conversation="none" data-lang="en"><p lang="en" dir="ltr">What about when you “jump” just as you’re drifting off to sleep, I heard that was a reflex to prevent falling from heights.</p>— Bann face (@thebanns) <a href="https://twitter.com/thebanns/status/1085554171879788545?ref_src=twsrc%5Etfw">January 16, 2019</a></blockquote> <script async src="https://platform.twitter.com/widgets.js" charset="utf-8"></script> <p> This thing, often called the "alpha jerk" as you drop into alpha sleep, is properly called the hypnic jerk,. It may actually be a carryover from our arboreal days. The <a href="https://www.livescience.com/39225-why-people-twitch-falling-asleep.html" target="_blank" data-vivaldi-spatnav-clickable="1">hypothesis</a> is that you suddenly jerk awake to avoid falling out of your tree.</p>Nails screeching on a blackboard response?
<blockquote class="twitter-tweet" data-conversation="none" data-lang="en"><p lang="en" dir="ltr">Everyone hate the sound of fingernails on a blackboard. It's _speculated_ that this is a vestigial wiring in our head, because the sound is similar to the shrill warning call of a chimp. <a href="https://t.co/ReyZBy6XNN">https://t.co/ReyZBy6XNN</a></p>— Pet Rock (@eclogiter) <a href="https://twitter.com/eclogiter/status/1085587006258888706?ref_src=twsrc%5Etfw">January 16, 2019</a></blockquote> <script async src="https://platform.twitter.com/widgets.js" charset="utf-8"></script>Ear hair
<blockquote class="twitter-tweet" data-conversation="none" data-lang="en"><p lang="en" dir="ltr">Ok what is Hair in the ears for? I think cuz as we get older it filters out the BS.</p>— Sarah21 (@mimix3) <a href="https://twitter.com/mimix3/status/1085684393593561088?ref_src=twsrc%5Etfw">January 16, 2019</a></blockquote> <script async src="https://platform.twitter.com/widgets.js" charset="utf-8"></script>Nervous laughter
<blockquote class="twitter-tweet" data-lang="en"><p lang="en" dir="ltr">You may be onto something. Tooth-bearing with the jaw clenched is generally recognized as a signal of submission or non-threatening in primates. Involuntary smiling or laughing in tense situations might have signaled that you weren’t a threat.</p>— Jager Tusk (@JagerTusk) <a href="https://twitter.com/JagerTusk/status/1085316201104912384?ref_src=twsrc%5Etfw">January 15, 2019</a></blockquote> <script async src="https://platform.twitter.com/widgets.js" charset="utf-8"></script>Um, yipes.
<blockquote class="twitter-tweet" data-conversation="none" data-lang="en"><p lang="en" dir="ltr">Sometimes it feels like my big toe should be on the side of my foot, was that ever a thing?</p>— B033? K@($ (@whimbrel17) <a href="https://twitter.com/whimbrel17/status/1085559016011563009?ref_src=twsrc%5Etfw">January 16, 2019</a></blockquote> <script async src="https://platform.twitter.com/widgets.js" charset="utf-8"></script>The COVID-19 pandemic has introduced a number of new behaviours into daily routines, like physical distancing, mask-wearing and hand sanitizing. Meanwhile, many old behaviours such as attending events, eating out and seeing friends have been put on hold.
VR experiments manipulate how people feel about coffee
A new study looks at how images of coffee's origins affect the perception of its premiumness and quality.
Expert drinking coffee while wearing a VR headset.
- Images can affect how people perceive the quality of a product.
- In a new study, researchers show using virtual reality that images of farms positively influence the subjects' experience of coffee.
- The results provide insights on the psychology and power of marketing.
Is empathy always good?
Research has shown how important empathy is to relationships, but there are limits to its power.
