Nobel Prize in Physics awarded to 3 scientists for black hole discoveries

Roger Penrose used mathematics to show black holes actually exist. Andrea Ghez and Reinhard Genzel helped uncover what lies at the center of our galaxy.

Nobel Prize in Physics

The scientists Roger Penrose, Andrea Ghez and Reinhard Genzel.

Credit: © Nobel Media/Niklas Elmehed.
  • Half of the prize was awarded to Roger Penrose, a British mathematical physicist who proved that black holes ought to exist, if Einstein's relativity is correct.
  • The other half was awarded to Reinhard Genzel, a German astrophysicist, and Andrea Ghez, an American astronomer.
  • Genzel and Ghez helped develop techniques to capture clearer images of the cosmos.

The 2020 Nobel Prize in Physics has been awarded to three scientists who advanced the world's understanding of black holes — the mysterious regions of spacetime from which nothing can escape.

Roger Penrose, a British mathematical physicist, was awarded half of the $1.1 million prize. The other half was awarded to Reinhard Genzel, a German astrophysicist, and Andrea Ghez, an American astronomer.

The Nobel Committee for Physics said Penrose, 89, won the prize "for the discovery that black hole formation is a robust prediction of the general theory of relativity," while Genzel and Ghez (68 and 55, respectively) won for "the discovery of a supermassive compact object at the centre of our galaxy."

"The discoveries of this year's Laureates have broken new ground in the study of compact and supermassive objects," David Haviland, chair of the Nobel Committee for Physics, said in a statement. "But these exotic objects still pose many questions that beg for answers and motivate future research. Not only questions about their inner structure, but also questions about how to test our theory of gravity under the extreme conditions in the immediate vicinity of a black hole."

Penrose, a professor at the University of Oxford, used "ingenious mathematical methods" to show that black holes are a direct consequence of Einstein's theory of general relativity, the committee wrote. (Einstein himself doubted that black holes existed in the real world.)

Together with the late theoretical physicist Stephen Hawking, Penrose helped to reinvigorate research on general relatively, largely by developing theories about singularities, which are believed to be a boundaries within black holes "at which all the known laws of nature break down." The committee wrote that Penrose's 1965 paper, which described the formation of black holes and singularities, "is still regarded as the most important contribution to the general theory of relativity since Einstein."

"Singularity, that's a place where the densities and curvatures go to infinity. You expect the physics go crazy," Penrose told The Associated Press. "When I say singularity, that's not really the black hole. The black hole prevents you from seeing the singularity. It's the nasty thing in the middle. If you fall into a black hole, then you pretty well inevitably get squashed into this singularity at the end. And that's the end."

Sagittarius A*

Since the early 1990s, Genzel and Ghez have been leading independent teams of astronomers that have helped develop techniques for capturing clearer images of the cosmos from Earth. The teams' primary focus of study was what lies at the center of our galaxy, a region called Sagittarius A*.

Credit: Johan Jarnestad/The Royal Swedish Academy of Sciences

Using some of the world's most sophisticated telescopes, Genzel and Ghez also discovered that one star in this region, known as S2 or S-O2, orbits the galaxy's center in just 16 years. (Compare that to our Sun, which takes 200 million years to complete an orbit around the galaxy.) Measurements from both teams indicated that Sagittarius A* is about the size of our solar system, but is incredibly dense, containing roughly 4 million solar masses. This led them to conclude the center of our galaxy could be only one thing: a supermassive black hole.

A Cave in France Changes What We Thought We Knew About Neanderthals

A cave in France contains man’s earliest-known structures that had to be built by Neanderthals who were believed to be incapable of such things.

Image source: yannvdb/Wikimedia Commons
Surprising Science

In a French cave deep underground, scientists have discovered what appear to be 176,000-year-old man-made structures. That's 150,000 years earlier than any that have been discovered anywhere before. And they could only have been built by Neanderthals, people who were never before considered capable of such a thing.

Keep reading Show less

Psychopath-ish: How “healthy” brains can look and function like those of psychopaths

A recent study used fMRI to compare the brains of psychopathic criminals with a group of 100 well-functioning individuals, finding striking similarities.

Obscure freaky smiling psycho man

Mind & Brain
  • The study used psychological inventories to assess a group of violent criminals and healthy volunteers for psychopathy, and then examined how their brains responded to watching violent movie scenes.
  • The fMRI results showed that the brains of healthy subjects who scored high in psychopathic traits reacted similarly as the psychopathic criminal group. Both of these groups also showed atrophy in brain regions involved in regulating emotion.
  • The study adds complexity to common conceptions of what differentiates a psychopath from a "healthy" individual.
Keep reading Show less

Fighting online misinformation: We're doing it wrong

Counterintuitively, directly combating misinformation online can spread it further. A different approach is needed.

Credit: China Photos via Getty Images
Coronavirus
  • Like the coronavirus, engaging with misinformation can inadvertently cause it to spread.
  • Social media has a business model based on getting users to spend increasing amounts of time on their platforms, which is why they are hesitant to remove engaging content.
  • The best way to fight online misinformation is to drown it out with the truth.
Keep reading Show less
Mind & Brain

Self-awareness is what makes us human

Because of our ability to think about thinking, "the gap between ape and man is immeasurably greater than the one between amoeba and ape."

Quantcast