Tuning in to Creation

Question: Will the Large Hadron Collider be able to recreate the moments after the birth of the universe?

Michio Kaku: With our satellites today, we can pick up radiation actually from the Big Bang itself, a few hundred thousand years after the Big Bang. Radiation was released throughout the universe that is now in the microwave range. Believe it or not, when you turn on the TV and you pick up static, when you turn on the radio and you pick up static, some of that static comes from creation itself. You can actually listen to some degree to the actual explosion that created the universe.

However, this explosion dates from a few hundred thousand years after the incident of creation. We're not satisfied. We physicists want to go to the instant of the Big Bang itself, and that's what the Hadron Collider will do. It'll recreate conditions not seen since perhaps a trillionth of a second after creation itself. And we hope the Large Hadron Collider will unlock some of the deepest secrets of space and time, matter and energy.

Modern satellites pick up radiation from the aftermath of the Big Bang. But until we understand the Bang itself, Michio Kaku won’t be satisfied.

Videos
  • Prejudice is typically perpetrated against 'the other', i.e. a group outside our own.
  • But ageism is prejudice against ourselves — at least, the people we will (hopefully!) become.
  • Different generations needs to cooperate now more than ever to solve global problems.


Scientists create a "lifelike" material that has metabolism and can self-reproduce

An innovation may lead to lifelike evolving machines.

Shogo Hamada/Cornell University
Surprising Science
  • Scientists at Cornell University devise a material with 3 key traits of life.
  • The goal for the researchers is not to create life but lifelike machines.
  • The researchers were able to program metabolism into the material's DNA.
Keep reading Show less

Scientists see 'rarest event ever recorded' in search for dark matter

The team caught a glimpse of a process that takes 18,000,000,000,000,000,000,000 years.

Image source: Pixabay
Surprising Science
  • In Italy, a team of scientists is using a highly sophisticated detector to hunt for dark matter.
  • The team observed an ultra-rare particle interaction that reveals the half-life of a xenon-124 atom to be 18 sextillion years.
  • The half-life of a process is how long it takes for half of the radioactive nuclei present in a sample to decay.
Keep reading Show less