The Multiverse Has 11 Dimensions
Question: Are there only three dimensions in other universes or could there be more? (Submitted by Andre Lapiere)
Michio Kaku: Andre, we believe, though we cannot yet prove, that our multiverse of universes is 11-dimensional. So think of this 11-dimensional arena and in this arena there are bubbles, bubbles that float and the skin of the bubble represents an entire universe, so we’re like flies trapped on fly paper. We’re on the skin of a bubble. It’s a three dimensional bubble. The three dimensional bubble is expanding and that is called the Big Bang theory and sometimes these bubbles can bump into each other, sometimes they can split apart and that we think is the Big Bang. So we even have a theory of the Big Bang itself. Now you ask a question what about the dimensions of each bubble. Well in string theory—which is what I do for a living; that's my day job—in string theory we can have bubbles of different dimensions. The highest dimension is 11. You cannot go beyond 11 because universes become unstable beyond 11. If I write down the theory of a 13-, 15-dimensional universe it’s unstable and it collapses down to an 11-dimensional universe. But within 11 dimensions you can have bubbles that are 3 dimensional, 4-dimensional, 5-dimensional. These are membranes, so for short we call them branes. So these branes can exist in different dimensions and let’s say P represents the dimension of each bubble, so we call them p-branes. So a p-brane is a universe in different dimensions floating in a much larger arena, and this larger arena is the hyperspace that I talked about originally.
Also remember that each bubble vibrates, and each bubble vibrating creates music. The music of these membranes is the subatomic particles. Each subatomic particle represents a note on a vibrating string or vibrating membranes. So, believe it or not, we now have a candidate for the "Mind of God" that Albert Einstein wrote about for the last 30 years of his life. The "Mind of God" in this picture would be cosmic music resonating throughout 11-dimensional hyperspace.
Recorded September 29, 2010
Interviewed by Paul Hoffman
The physicist explains why other universes in the mulitverse could have many more dimensions—and could comprise Einstein's "Mind of God."
Big ideas.
Once a week.
Subscribe to our weekly newsletter.
How tiny bioelectronic implants may someday replace pharmaceutical drugs
Scientists are using bioelectronic medicine to treat inflammatory diseases, an approach that capitalizes on the ancient "hardwiring" of the nervous system.
- Bioelectronic medicine is an emerging field that focuses on manipulating the nervous system to treat diseases.
- Clinical studies show that using electronic devices to stimulate the vagus nerve is effective at treating inflammatory diseases like rheumatoid arthritis.
- Although it's not yet approved by the US Food and Drug Administration, vagus nerve stimulation may also prove effective at treating other diseases like cancer, diabetes and depression.
The nervous system’s ancient reflexes
<p>You accidentally place your hand on a hot stove. Almost instantaneously, your hand withdraws.</p><p>What triggered your hand to move? The answer is <em>not</em> that you consciously decided the stove was hot and you should move your hand. Rather, it was a reflex: Skin receptors on your hand sent nerve impulses to the spinal cord, which ultimately sent back motor neurons that caused your hand to move away. This all occurred before your "conscious brain" realized what happened.</p><p>Similarly, the nervous system has reflexes that protect individual cells in the body.</p><p>"The nervous system evolved because we need to respond to stimuli in the environment," said Dr. Tracey. "Neural signals don't come from the brain down first. Instead, when something happens in the environment, our peripheral nervous system senses it and sends a signal to the central nervous system, which comprises the brain and spinal cord. And then the nervous system responds to correct the problem."</p><p>So, what if scientists could "hack" into the nervous system, manipulating the electrical activity in the nervous system to control molecular processes and produce desirable outcomes? That's the chief goal of bioelectronic medicine.</p><p>"There are billions of neurons in the body that interact with almost every cell in the body, and at each of those nerve endings, molecular signals control molecular mechanisms that can be defined and mapped, and potentially put under control," Dr. Tracey said in a <a href="https://www.youtube.com/watch?v=AJH9KsMKi5M" target="_blank">TED Talk</a>.</p><p>"Many of these mechanisms are also involved in important diseases, like cancer, Alzheimer's, diabetes, hypertension and shock. It's very plausible that finding neural signals to control those mechanisms will hold promises for devices replacing some of today's medication for those diseases."</p><p>How can scientists hack the nervous system? For years, researchers in the field of bioelectronic medicine have zeroed in on the longest cranial nerve in the body: the vagus nerve.</p>The vagus nerve
<img type="lazy-image" data-runner-src="https://assets.rebelmouse.io/eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJpbWFnZSI6Imh0dHBzOi8vYXNzZXRzLnJibC5tcy8yNTYyOTM5OC9vcmlnaW4uanBnIiwiZXhwaXJlc19hdCI6MTY0NTIwNzk0NX0.UCy-3UNpomb3DQZMhyOw_SQG4ThwACXW_rMnc9mLAe8/img.jpg?width=1245&coordinates=0%2C0%2C0%2C0&height=700" id="09add" class="rm-shortcode" data-rm-shortcode-id="f38dbfbbfe470ad85a3b023dd5083557" data-rm-shortcode-name="rebelmouse-image" data-width="1245" data-height="700" />Electrical signals, seen here in a synapse, travel along the vagus nerve to trigger an inflammatory response.
Credit: Adobe Stock via solvod
<p>The vagus nerve ("vagus" meaning "wandering" in Latin) comprises two nerve branches that stretch from the brainstem down to the chest and abdomen, where nerve fibers connect to organs. Electrical signals constantly travel up and down the vagus nerve, facilitating communication between the brain and other parts of the body.</p><p>One aspect of this back-and-forth communication is inflammation. When the immune system detects injury or attack, it automatically triggers an inflammatory response, which helps heal injuries and fend off invaders. But when not deployed properly, inflammation can become excessive, exacerbating the original problem and potentially contributing to diseases.</p><p>In 2002, Dr. Tracey and his colleagues discovered that the nervous system plays a key role in monitoring and modifying inflammation. This occurs through a process called the <a href="https://www.nature.com/articles/nature01321" target="_blank" rel="noopener noreferrer">inflammatory reflex</a>. In simple terms, it works like this: When the nervous system detects inflammatory stimuli, it reflexively (and subconsciously) deploys electrical signals through the vagus nerve that trigger anti-inflammatory molecular processes.</p><p>In rodent experiments, Dr. Tracey and his colleagues observed that electrical signals traveling through the vagus nerve control TNF, a protein that, in excess, causes inflammation. These electrical signals travel through the vagus nerve to the spleen. There, electrical signals are converted to chemical signals, triggering a molecular process that ultimately makes TNF, which exacerbates conditions like rheumatoid arthritis.</p><p>The incredible chain reaction of the inflammatory reflex was observed by Dr. Tracey and his colleagues in greater detail through rodent experiments. When inflammatory stimuli are detected, the nervous system sends electrical signals that travel through the vagus nerve to the spleen. There, the electrical signals are converted to chemical signals, which trigger the spleen to create a white blood cell called a T cell, which then creates a neurotransmitter called acetylcholine. The acetylcholine interacts with macrophages, which are a specific type of white blood cell that creates TNF, a protein that, in excess, causes inflammation. At that point, the acetylcholine triggers the macrophages to stop overproducing TNF – or inflammation.</p><p>Experiments showed that when a specific part of the body is inflamed, specific fibers within the vagus nerve start firing. Dr. Tracey and his colleagues were able to map these relationships. More importantly, they were able to stimulate specific parts of the vagus nerve to "shut off" inflammation.</p><p>What's more, clinical trials show that vagus nerve stimulation not only "shuts off" inflammation, but also triggers the production of cells that promote healing.</p><p>"In animal experiments, we understand how this works," Dr. Tracey said. "And now we have clinical trials showing that the human response is what's predicted by the lab experiments. Many scientific thresholds have been crossed in the clinic and the lab. We're literally at the point of regulatory steps and stages, and then marketing and distribution before this idea takes off."<br></p>The future of bioelectronic medicine
<img type="lazy-image" data-runner-src="https://assets.rebelmouse.io/eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJpbWFnZSI6Imh0dHBzOi8vYXNzZXRzLnJibC5tcy8yNTYxMDYxMy9vcmlnaW4uanBnIiwiZXhwaXJlc19hdCI6MTYzNjQwOTExNH0.uBY1TnEs_kv9Dal7zmA_i9L7T0wnIuf9gGtdRXcNNxo/img.jpg?width=980" id="8b5b2" class="rm-shortcode" data-rm-shortcode-id="c005e615e5f23c2817483862354d2cc4" data-rm-shortcode-name="rebelmouse-image" data-width="2000" data-height="1125" />Vagus nerve stimulation can already treat Crohn's disease and other inflammatory diseases. In the future, it may also be used to treat cancer, diabetes, and depression.
Credit: Adobe Stock via Maridav
<p>Vagus nerve stimulation is currently awaiting approval by the US Food and Drug Administration, but so far, it's proven safe and effective in clinical trials on humans. Dr. Tracey said vagus nerve stimulation could become a common treatment for a wide range of diseases, including cancer, Alzheimer's, diabetes, hypertension, shock, depression and diabetes.</p><p>"To the extent that inflammation is the problem in the disease, then stopping inflammation or suppressing the inflammation with vagus nerve stimulation or bioelectronic approaches will be beneficial and therapeutic," he said.</p><p>Receiving vagus nerve stimulation would require having an electronic device, about the size of lima bean, surgically implanted in your neck during a 30-minute procedure. A couple of weeks later, you'd visit, say, your rheumatologist, who would activate the device and determine the right dosage. The stimulation would take a few minutes each day, and it'd likely be unnoticeable.</p><p>But the most revolutionary aspect of bioelectronic medicine, according to Dr. Tracey, is that approaches like vagus nerve stimulation wouldn't come with harmful and potentially deadly side effects, as many pharmaceutical drugs currently do.</p><p>"A device on a nerve is not going to have systemic side effects on the body like taking a steroid does," Dr. Tracey said. "It's a powerful concept that, frankly, scientists are quite accepting of—it's actually quite amazing. But the idea of adopting this into practice is going to take another 10 or 20 years, because it's hard for physicians, who've spent their lives writing prescriptions for pills or injections, that a computer chip can replace the drug."</p><p>But patients could also play a role in advancing bioelectronic medicine.</p><p>"There's a huge demand in this patient cohort for something better than they're taking now," Dr. Tracey said. "Patients don't want to take a drug with a black-box warning, costs $100,000 a year and works half the time."</p><p>Michael Dowling, president and CEO of Northwell Health, elaborated:</p><p>"Why would patients pursue a drug regimen when they could opt for a few electronic pulses? Is it possible that treatments like this, pulses through electronic devices, could replace some drugs in the coming years as preferred treatments? Tracey believes it is, and that is perhaps why the pharmaceutical industry closely follows his work."</p><p>Over the long term, bioelectronic approaches are unlikely to completely replace pharmaceutical drugs, but they could replace many, or at least be used as supplemental treatments.</p><p>Dr. Tracey is optimistic about the future of the field.</p><p>"It's going to spawn a huge new industry that will rival the pharmaceutical industry in the next 50 years," he said. "This is no longer just a startup industry. [...] It's going to be very interesting to see the explosive growth that's going to occur."</p>Toward a disease-sniffing device that rivals a dog’s nose
Trained dogs can detect cancer and other diseases by smell. Could a device do the same?
Numerous studies have shown that trained dogs can detect many kinds of disease — including lung, breast, ovarian, bladder, and prostate cancers, and possibly Covid-19 — simply through smell. In some cases, involving prostate cancer for example, the dogs had a 99 percent success rate in detecting the disease by sniffing patients' urine samples.
New research shows that bullies are often friends
Remedies must honor the complex social dynamics of adolescence.
- Bullies are likely to be friends according to new research published in the American Journal of Sociology.
- The researchers write that complex social dynamics among adolescents allow the conditions for intragroup dominance.
- The team uses the concept of "frenemies" to describe the relationship between many bullies and victims.
School Bullying: Are We Taking the Wrong Approach?
<span style="display:block;position:relative;padding-top:56.25%;" class="rm-shortcode" data-rm-shortcode-id="dfd7e31a97e8a049081d3cf6b978714f"><iframe type="lazy-iframe" data-runner-src="https://www.youtube.com/embed/E3U38uZBW6w?rel=0" width="100%" height="auto" frameborder="0" scrolling="no" style="position:absolute;top:0;left:0;width:100%;height:100%;"></iframe></span><p>Femlee, a sociology professor at Penn State, says her study offers important insights into why bullying occurs—and, potentially, leaves clues for how to combat it. Her team found peer aggression to be much higher among students that are proximal to one another, either through friendship or social circles. Bullying does not end friendships, she says; they persist over the long-term, with the bullied maintaining ties to their tormentors. </p><p>Looking at a data set of over 3,000 students—at least half were either bullier or victim—the researchers asked students to choose five classmates that had been mean to them, then analyzed these networks while racking levels of anxiety, depression, and suicidal ideation. As one student remarked, "Sometimes your own friends bully you. I don't understand why, why my friends do this to me."</p><p>Femlee <a href="https://news.psu.edu/story/648500/2021/02/22/research/et-tu-brute-teens-may-be-more-likely-be-bullied-social-climbing" target="_blank" rel="noopener noreferrer">elaborates on the complex dynamics</a> of adolescence:</p><p style="margin-left: 20px;">"These conflicts likely arise between young people who are eyeing the same spot on the team, club, or vying for the same best friend or romantic partner. Those who are closely linked in the school social network are apt to encounter situations in which they are rivals for identical positions and social ties."</p>Photo: motortion / Adobe Stock
<p>They note that strained friendships are more likely to produce dominance behavior and power differentials than close ties. Punching down is common, especially between students of the same gender, race, and grade. The race for recognition seems to necessitate close racial and gender ties. "Frenemies" usually result from one member of a group victimizing another in an attempt at clawing their way to the top of the network.</p><p>This competition can have lifelong effects, such as reducing the bullied's chances of developing intimate relationships. The authors note that most bullying prevention programs fail becuase, in part, "aggressive behavior accrues social rewards and does so to a degree that leads some to betray their closest friends."</p><p>Such programs tend to focus on a fraction of bullying dynamics, such as empathy deficits and emotional dysregulation. They fail to take into account the complex social dynamics of being a teenager. The authors believe coopting status contents and changing the behavior of high-status youths could have downline effects. Instead of dismantling hierarchies, they recommend recognizing status is intrinsic to group fitness instead of pretending the struggle to the top is an aberration. Only then can you create structural change. </p><p>Friends, they conclude, can be the problem but also offer the solution. Aiming for enduring friendships instead of backstabbing frenemies is a tall order but it could impact the tragedy of bullying—and the emotional carnage it leaves in its wake. </p><p>--</p><p><em>Stay in touch with Derek on <a href="http://www.twitter.com/derekberes" target="_blank">Twitter</a> and <a href="https://www.facebook.com/DerekBeresdotcom" target="_blank" rel="noopener noreferrer">Facebook</a>. His most recent book is</em> "<em><a href="https://www.amazon.com/gp/product/B08KRVMP2M?pf_rd_r=MDJW43337675SZ0X00FH&pf_rd_p=edaba0ee-c2fe-4124-9f5d-b31d6b1bfbee" target="_blank" rel="noopener noreferrer">Hero's Dose: The Case For Psychedelics in Ritual and Therapy</a>."</em></p>Archaeologists identify contents of ancient Mayan drug containers
Scientists use new methods to discover what's inside drug containers used by ancient Mayan people.
- Archaeologists used new methods to identify contents of Mayan drug containers.
- They were able to discover a non-tobacco plant that was mixed in by the smoking Mayans.
- The approach promises to open up new frontiers in the knowledge of substances ancient people consumed.
PARME staff archaeologists excavating a burial site at the Tamanache site, Mérida, Yucatan.
Credit: WSU
Why cities are critical to achieving a carbon-neutral world
In May 2018, the city of Paris set an ambition to be carbon-neutral by 2050.
- Countries, governments and companies are aligning on a need for net-zero - and this is an opportunity to rethink decarbonizing our cities.
- There is no "one-size-fits-all" solution – each city's needs must be at the heart of developing integrated energy solutions.
- A city can only decarbonize through collaboration between government, the private sector, and local communities.
