Neuroprosthetics and deep brain stimulation: Two big neuroscience breakthroughs

Neuroscience is working to conquer some of the human body's cruelest conditions: Paralysis, brain disease, and schizophrenia.

SUSAN HOCKFIELD: One issue that I think haunts all of us is enabling the disabled. How can we make it possible for people who have lost the ability to use their limbs -- either by amputation or by stroke -- how do we give them a better life? How do we make their lives more enjoyable, give them greater mobility? One of my colleagues -- going back to my early days as a neuroscientist -- John Donoghue, has been fascinated in how the part of our brain that controls movements works. It's called the motor cortex, part of the cerebral cortex; it's located just about here. And we have known for many, many, many years that signals from the nerve cells in that part of the brain drive motions. If I want to reach out my arm to grab a glass of water, it's signals from the motor cortex that send their information down the spinal cord in our back and then out to the limbs. If you've had a spinal cord injury or a stroke, those connections are interrupted. But John Donoghue understood that just because the connections were interrupted didn't mean that the motor cortex wasn't working. And he resolved to figure out a way to pick up the signals from the motor cortex and translate them into either a robotic arm or an individual's own arm by connecting to another set of electronics that could drive the muscles in the arm of someone who was paralyzed.

He and his colleagues have invented an intracortical brain computer interface; it's a very, very teeny set of electrodes -- it's about the size of a baby aspirin -- that has a hundred very fine wires that can sit in the motor cortex. They pick up the signals from the nerve cells in the motor cortex and relay them to a computer. The computer then decodes the signal and then can send that signal out to a robotic arm or, as I said, through a number of connections back to the individual's own arm and gives that individual the ability, for the first time since their injury, to feed themselves, to grab a cup of coffee and take a sip by themselves. So it gives them a kind of independence they never had.

One of John Donoghue's colleagues, Dr. Leigh Hochberg, who's worked closely with him on these experiments, told me something really quite extraordinary. The whole world of deep brain stimulation, which is related, and it's a world that is related to recording signals from the brain, but also driving brain activity by stimulating electrodes in the brain. And this kind of deep brain stimulation has proved effective for some kinds of epilepsy. It's proved remarkably effective for some individuals with Parkinson's, it has controlled their tremors. And there are a lot of possibilities. The problem with understanding the brain and intervening is there are a billion nerve cells in the brain, and figuring out how each one participates in an activity is a daunting task, to put it mildly. But what these experiments suggest is that we may not need to do a cell by cell analysis. We may not need a cell by cell understanding of the circuitry that drives a particular activity, an activity we want or an activity we don't want. We may be able to operate at the level of ensembles of neurons, and this is what happens when we use deep brain stimulation to control epilepsy or control Parkinson's.

What Dr. Hochberg told me about was his dream, and it is really a quite inspiring dream. Besides epilepsy, there are other diseases that are intermittent. And he suggests that perhaps for something as complicated as schizophrenia, where some of the time an individual who has schizophrenia will be functioning absolutely normally, and then the brain departs from a normal function into an aberrant function, which is manifest in all of the signs and signals of schizophrenia. What he suggests is that we may someday -- and let's hope in the not so distant future -- be able to record from an individual's brain and understand when the signals began to move into the schizophrenic mode and perhaps be able to stimulate the brain to correct that back to the normal mode.

  • Neuroscience and engineering are uniting in mind-blowing ways that will drastically improve the quality of life for people with conditions like epilepsy, paralysis or schizophrenia.
  • Researchers have developed a brain-computer interface the size of a baby aspirin that can restore mobility to people with paralysis or amputated limbs. It rewires neural messages from the brain's motor cortex to a robotic arm, or reroutes it to the person's own muscles.
  • Deep brain stimulation is another wonder of neuroscience that can effectively manage brain conditions like epilepsy, Parkinson's, and may one day mitigate schizophrenia so people can live normal, independent lives.

Michio Kaku: Genetic and digital immortality are within reach

Technology may soon grant us immortality, in a sense. Here's how.

  • Through the Connectome Project we may soon be able to map the pathways of the entire human brain, including memories, and create computer programs that evoke the person the digitization is stemmed from.
  • We age because errors build up in our cells — mitochondria to be exact.
  • With CRISPR technology we may soon be able to edit out errors that build up as we age, and extend the human lifespan.
Keep reading Show less

Active ingredient in Roundup found in 95% of studied beers and wines

The controversial herbicide is everywhere, apparently.

Surprising Science
  • U.S. PIRG tested 20 beers and wines, including organics, and found Roundup's active ingredient in almost all of them.
  • A jury on August 2018 awarded a non-Hodgkin's lymphoma victim $289 million in Roundup damages.
  • Bayer/Monsanto says Roundup is totally safe. Others disagree.
Keep reading Show less

Robot pizza delivery coming later this year from Domino's

The pizza giant Domino's partners with a Silicon Valley startup to start delivering pizza by robots.

Technology & Innovation
  • Domino's partnered with the Silicon Valley startup Nuro to have robot cars deliver pizza.
  • The trial run will begin in Houston later this year.
  • The robots will be half a regular car and will need to be unlocked by a PIN code.

Would you have to tip robots? You might be answering that question sooner than you think as Domino's is about to start using robots for delivering pizza. Later this year a fleet of self-driving robotic vehicles will be spreading the joy of pizza throughout the Houston area for the famous pizza manufacturer, using delivery cars made by the Silicon Valley startup Nuro.

The startup, founded by Google veterans, raised $940 million in February and has already been delivering groceries for Kroger around Houston. Partnering with the pizza juggernaut Domino's, which delivers close to 3 million pizzas a day, is another logical step for the expanding drone car business.

Kevin Vasconi of Domino's explained in a press release that they see these specially-designed robots as "a valuable partner in our autonomous vehicle journey," adding "The opportunity to bring our customers the choice of an unmanned delivery experience, and our operators an additional delivery solution during a busy store rush, is an important part of our autonomous vehicle testing."

How will they work exactly? Nuro explained in its own press release that this "opportunity to use Nuro's autonomous delivery" will be available for some of the customers who order online. Once they opt in, they'll be able to track the car via an app. When the vehicle gets to them, the customers will use a special PIN code to unlock the pizza compartment.

Nuro and its competitors Udelv and Robomart have been focusing specifically on developing such "last-mile product delivery" machines, reports Arstechnica. Their specially-made R1 vehicle is about half the size of a regular passenger car and doesn't offer any room for a driver. This makes it safer and lighter too, with less potential to cause harm in case of an accident. It also sticks to a fairly low speed of under 25 miles an hour and slams on the breaks at the first sign of trouble.

What also helps such robot cars is "geofencing" technology which confines them to a limited area surrounding the store.

For now, the cars are still tracked around the neighborhoods by human-driven vehicles, with monitors to make sure nothing goes haywire. But these "chase cars" should be phased out eventually, an important milestone in the evolution of your robot pizza drivers.

Check out how Nuro's vehicles work: