Leaders Are More Likely To Be Sociopaths
Paul R. Lawrence is a Professor Emeritus of Harvard Business School, where he served nine years as chairman of the Organizational Behavior area and also as chairman of both the MBA and AMP programs. His research, published in 25 books and numerous articles, has dealt with the human aspects of management, organizational change, organization design, human nature, and leadership. His 1967 book, Organization and Environment (written with Professor Jay Lorsch), added "contingency theory" to the vocabulary of students of organizational behavior. Recently he has, with others, made a comparative study of Soviet management practices that was published in 1990 as Behind the Factory Walls: Decision Making in Soviet and U.S. Enterprises.
Question: Are leaders more likely to be sociopaths?
Paul Lawrence: Well the question becomes you know, do these people without conscience, let’s call them PWOC’s is a rather shorthand way for that. Talking about them getting into leadership positions and they probably get into them out of all proportion to a percentage often population, we estimate they maybe 2% to 4% of the population are such people. And we think they get into the leadership positions maybe 8% or 10% of the time, but you know, any percent is a mess because they can wreak havoc in exploiting other people. They probably get there more than others because it’s the only thing they’re looking for in life. You know we got normal people have got a lot of things they’re trying to get in life. They’re trying to have healthy families and good relationships with friends and so forth. And if you’re aren’t paying any attention to that, you can probably get to a power position more readily, because you can be pretty cunning and pretty smart, and a lot of them are very charming. You know, they don’t come across, a lot of them, as evil, they come across as very charming people and they can worm their way into those spots and we have to be cautious.
A lot of history records the fact that such people have gotten into important positions. The whole Dark Ages was a period in which those people got into leadership positions in governments on a large-scale basis and there was a tremendous amount of warfare and suffering during those times. I think the whole Renaissance has been an effort to move away from that kind of leadership. I think the effort to put together the Constitution of the United States, which I discuss at some length in the book, was a effort to create a government that can protect itself against such kind of leadership. Making it... by balancing the power and not getting power concentrated in any one office is a way of avoiding that kind of leadership.
So it’s come up throughout history and that is thoroughly discussed and we see it not only, obviously, in business, we can name and do name prominent leaders in business who are highly suspect of having that feature.
But the point is, they do get into some of those roles and... For instance, take the scandal in Wall Street with the crash in the market and the resulting worldwide depression. I discussed that in a chapter which I come out with a fairly bold statement which is still not the way in which the government is defining what happened. There were a few, there didn’t have to be many, and they didn’t necessarily didn’t have to be all CEOs of the big banks who saw the opportunity to buy up subprime mortgages—which were really written without much interest in whether they recipient could repay them and so were subject to a lot of foreclosures—but the banks that wrote them knew they could instantly sell them to the Wall Street banks because they were collecting these mortgages wholesale so they could slice and dice them up into a sort of a mysterious packages and sell them as Triple-A bonds certified by the grading agencies, and collect 100% on the dollar for those bonds to people who were trustees of pension funds and endowments, and we sitting in responsibility to make those investments in bonds, by law they had to do it so those bonds looked pretty good to them. They didn’t realize that the bonds were probably... they were phony. They were really worth maybe only 50% of their face value at the moment they bought them. And that was the con, the absolute fraud that was pulled off. And we still don’t have a clear understanding by the public or even by the Department of Justice that that is what happened, and we should be prosecuting those people and getting the evidence out that will prove that those are criminal actions.
Question: What would we do if genetics could pinpoint someone as a psychopath?
Paul Lawrence: Well, obviously, that’s an extremely difficult question. It’s going to raise a lot of moral questions. What do we do with people that are positively identified by DNA of being psychopathic types? And these are characteristics that they didn’t ask for, they didn’t choose them, they were simply an accident of birth, yet nevertheless makes them a hazard to other people that they have to find some what to protect themselves from, somewhat to constrain people, so they can’t do things like Hitler did to so many people in the world.
Well, you know, I don’t have all the answers to that. I have thought about it, a lot of people thought about it. I think, you know, it is one possibility when you’re considering candidates for a powerful position and considering who is going to get a job, you can say, "Well, maybe we ought to test them and see that they get a license, so that they’re qualified," the way we do with people that are going to be airline pilots or the people that are going to be a number of professional roles like doctors and lawyers and so forth—they have to produce a test for being licensed for those roles. Well, if it’s a powerful role, we could say that part of the licensing process is to test your DNA to see whether or not you’re, you know, an innate psychopath because we do not want such people in such power positions. "You’ve got to go find something else to do in this world besides that because we cannot... we cannot trust you with that kind of power. "
As just one idea. I don’t say it’s the answer, I think we’ve got to think of a lot of ideas and put our minds to work on it.
Recorded on July 28, 2010
Interviewed by Max Miller
People without a conscience don’t need to satisfy the drive to bond and can focus entirely on the drive to acquire, making them more likely to seek leadership positions.
Get smarter, faster. Subscribe to our daily newsletter.
Your genetics influence how resilient you are to the cold
What makes some people more likely to shiver than others?
Some people just aren't bothered by the cold, no matter how low the temperature dips. And the reason for this may be in a person's genes.
Harvard study finds perfect blend of fruits and vegetables to lower risk of death
Eating veggies is good for you. Now we can stop debating how much we should eat.
- A massive new study confirms that five servings of fruit and veggies a day can lower the risk of death.
- The maximum benefit is found at two servings of fruit and three of veggies—anything more offers no extra benefit according to the researchers.
- Not all fruits and veggies are equal. Leafy greens are better for you than starchy corn and potatoes.
A landslide is imminent and so is its tsunami
An open letter predicts that a massive wall of rock is about to plunge into Barry Arm Fjord in Alaska.
- A remote area visited by tourists and cruises, and home to fishing villages, is about to be visited by a devastating tsunami.
- A wall of rock exposed by a receding glacier is about crash into the waters below.
- Glaciers hold such areas together — and when they're gone, bad stuff can be left behind.
The Barry Glacier gives its name to Alaska's Barry Arm Fjord, and a new open letter forecasts trouble ahead.
Thanks to global warming, the glacier has been retreating, so far removing two-thirds of its support for a steep mile-long slope, or scarp, containing perhaps 500 million cubic meters of material. (Think the Hoover Dam times several hundred.) The slope has been moving slowly since 1957, but scientists say it's become an avalanche waiting to happen, maybe within the next year, and likely within 20. When it does come crashing down into the fjord, it could set in motion a frightening tsunami overwhelming the fjord's normally peaceful waters .
"It could happen anytime, but the risk just goes way up as this glacier recedes," says hydrologist Anna Liljedahl of Woods Hole, one of the signatories to the letter.
The Barry Arm Fjord
Camping on the fjord's Black Sand Beach
Image source: Matt Zimmerman
The Barry Arm Fjord is a stretch of water between the Harriman Fjord and the Port Wills Fjord, located at the northwest corner of the well-known Prince William Sound. It's a beautiful area, home to a few hundred people supporting the local fishing industry, and it's also a popular destination for tourists — its Black Sand Beach is one of Alaska's most scenic — and cruise ships.
Not Alaska’s first watery rodeo, but likely the biggest
Image source: whrc.org
There have been at least two similar events in the state's recent history, though not on such a massive scale. On July 9, 1958, an earthquake nearby caused 40 million cubic yards of rock to suddenly slide 2,000 feet down into Lituya Bay, producing a tsunami whose peak waves reportedly reached 1,720 feet in height. By the time the wall of water reached the mouth of the bay, it was still 75 feet high. At Taan Fjord in 2015, a landslide caused a tsunami that crested at 600 feet. Both of these events thankfully occurred in sparsely populated areas, so few fatalities occurred.
The Barry Arm event will be larger than either of these by far.
"This is an enormous slope — the mass that could fail weighs over a billion tonnes," said geologist Dave Petley, speaking to Earther. "The internal structure of that rock mass, which will determine whether it collapses, is very complex. At the moment we don't know enough about it to be able to forecast its future behavior."
Outside of Alaska, on the west coast of Greenland, a landslide-produced tsunami towered 300 feet high, obliterating a fishing village in its path.
What the letter predicts for Barry Arm Fjord
Moving slowly at first...
Image source: whrc.org
"The effects would be especially severe near where the landslide enters the water at the head of Barry Arm. Additionally, areas of shallow water, or low-lying land near the shore, would be in danger even further from the source. A minor failure may not produce significant impacts beyond the inner parts of the fiord, while a complete failure could be destructive throughout Barry Arm, Harriman Fiord, and parts of Port Wells. Our initial results show complex impacts further from the landslide than Barry Arm, with over 30 foot waves in some distant bays, including Whittier."
The discovery of the impeding landslide began with an observation by the sister of geologist Hig Higman of Ground Truth, an organization in Seldovia, Alaska. Artist Valisa Higman was vacationing in the area and sent her brother some photos of worrying fractures she noticed in the slope, taken while she was on a boat cruising the fjord.
Higman confirmed his sister's hunch via available satellite imagery and, digging deeper, found that between 2009 and 2015 the slope had moved 600 feet downhill, leaving a prominent scar.
Ohio State's Chunli Dai unearthed a connection between the movement and the receding of the Barry Glacier. Comparison of the Barry Arm slope with other similar areas, combined with computer modeling of the possible resulting tsunamis, led to the publication of the group's letter.
While the full group of signatories from 14 organizations and institutions has only been working on the situation for a month, the implications were immediately clear. The signers include experts from Ohio State University, the University of Southern California, and the Anchorage and Fairbanks campuses of the University of Alaska.
Once informed of the open letter's contents, the Alaska's Department of Natural Resources immediately released a warning that "an increasingly likely landslide could generate a wave with devastating effects on fishermen and recreationalists."
How do you prepare for something like this?
Image source: whrc.org
The obvious question is what can be done to prepare for the landslide and tsunami? For one thing, there's more to understand about the upcoming event, and the researchers lay out their plan in the letter:
"To inform and refine hazard mitigation efforts, we would like to pursue several lines of investigation: Detect changes in the slope that might forewarn of a landslide, better understand what could trigger a landslide, and refine tsunami model projections. By mapping the landslide and nearby terrain, both above and below sea level, we can more accurately determine the basic physical dimensions of the landslide. This can be paired with GPS and seismic measurements made over time to see how the slope responds to changes in the glacier and to events like rainstorms and earthquakes. Field and satellite data can support near-real time hazard monitoring, while computer models of landslide and tsunami scenarios can help identify specific places that are most at risk."
In the letter, the authors reached out to those living in and visiting the area, asking, "What specific questions are most important to you?" and "What could be done to reduce the danger to people who want to visit or work in Barry Arm?" They also invited locals to let them know about any changes, including even small rock-falls and landslides.
Cephalopod aces 'marshmallow test' designed for eager children
The famous cognition test was reworked for cuttlefish. They did better than expected.
- Scientists recently ran the Stanford marshmallow experiment on cuttlefish and found they were pretty good at it.
- The test subjects could wait up to two minutes for a better tasting treat.
- The study suggests cuttlefish are smarter than you think but isn't the final word on how bright they are.
Proof that some people are less patient than invertebrates
<iframe width="730" height="430" src="https://www.youtube.com/embed/H1yhGClUJ0U" frameborder="0" allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture" allowfullscreen></iframe><p> The common cuttlefish is a small cephalopod notable for producing sepia ink and relative intelligence for an invertebrate. Studies have shown them to be capable of remembering important details from previous foraging experiences, and to adjust their foraging strategies in response to changing circumstances. </p><p>In a new study, published in <a href="https://royalsocietypublishing.org/doi/10.1098/rspb.2020.3161" target="_blank" rel="noopener noreferrer">The Proceedings of the Royal Society B</a>, researchers demonstrated that the critters have mental capacities previously thought limited to vertebrates.</p><p>After determining that cuttlefish are willing to eat raw king prawns but prefer a live grass shrimp, the researchers trained them to associate certain symbols on see-through containers with a different level of accessibility. One symbol meant the cuttlefish could get into the box and eat the food inside right away, another meant there would be a delay before it opened, and the last indicated the container could not be opened.</p><p>The cephalopods were then trained to understand that upon entering one container, the food in the other would be removed. This training also introduced them to the idea of varying delay times for the boxes with the second <a href="https://www.sciencealert.com/cuttlefish-can-pass-a-cognitive-test-designed-for-children" target="_blank" rel="noopener noreferrer">symbol</a>. </p><p>Two of the cuttlefish recruited for the study "dropped out," at this point, but the remaining six—named Mica, Pinto, Demi, Franklin, Jebidiah, and Rogelio—all caught on to how things worked pretty quickly.</p><p>It was then that the actual experiment could begin. The cuttlefish were presented with two containers: one that could be opened immediately with a raw king prawn, and one that held a live grass shrimp that would only open after a delay. The subjects could always see both containers and had the ability to go to the immediate access option if they grew tired of waiting for the other. The poor control group was faced with a box that never opened and one they could get into right away.</p><p>In the end, the cuttlefish demonstrated that they would wait anywhere between 50 and 130 seconds for the better treat. This is the same length of time that some primates and birds have shown themselves to be able to wait for.</p><p>Further tests of the subject's cognitive abilities—they were tested to see how long it took them to associate a symbol with a prize and then on how long it took them to catch on when the symbols were switched—showed a relationship between how long a cuttlefish was willing to wait and how quickly it learned the associations. </p>All of this is interesting, but what use could it possibly have?
<img type="lazy-image" data-runner-src="https://assets.rebelmouse.io/eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJpbWFnZSI6Imh0dHBzOi8vYXNzZXRzLnJibC5tcy8yNTcxNzY2MS9vcmlnaW4uanBnIiwiZXhwaXJlc19hdCI6MTY2MTM0MzYyMH0.lKFLPfutlflkzr_NM6WmnosKM1rU6UEIHWlyzWhYQNM/img.jpg?width=1245&coordinates=0%2C10%2C0%2C88&height=700" id="77c04" class="rm-shortcode" data-rm-shortcode-id="7eb9d5b2d890496756a69fb45ceac87c" data-rm-shortcode-name="rebelmouse-image" data-width="1245" data-height="700" />A diagram showing the experimental set up. On the left is the control condition, on the right is the experimental condition.
Credit: Alexandra K. Schnell et al., 2021
<p> As you can probably guess, the ability to delay gratification as part of a plan is not the most common thing in the animal kingdom. While humans, apes, some birds, and dogs can do it, less intelligent animals can't. </p><p>While it is reasonably simple to devise a hypothesis for why social humans, tool-making chimps, or hunting birds are able to delay gratification, the cuttlefish is neither social, a toolmaker, or is it hunting anything particularly <a href="https://gizmodo.com/cuttlefish-are-able-to-wait-for-a-reward-1846392756" target="_blank" rel="noopener noreferrer">intelligent</a>. Why they evolved this capacity is up for debate. </p><p>Lead author Alexandra Schnell of the University of Cambridge discussed their speculations on the evolutionary advantage cuttlefish might get out of this skill with <a href="https://www.eurekalert.org/pub_releases/2021-03/mbl-qc022621.php" target="_blank" rel="noopener noreferrer">Eurekalert:</a> </p><p style="margin-left: 20px;"> "Cuttlefish spend most of their time camouflaging, sitting and waiting, punctuated by brief periods of foraging. They break camouflage when they forage, so they are exposed to every predator in the ocean that wants to eat them. We speculate that delayed gratification may have evolved as a byproduct of this, so the cuttlefish can optimize foraging by waiting to choose better quality food."</p><p>Given the unique evolutionary tree of the cuttlefish, its cognitive abilities are an example of convergent evolution, in which two unrelated animals, in this case primates and cuttlefish, evolve the same trait to solve similar problems. These findings could help shed light on the evolution of the cuttlefish and its relatives. </p><p> It should be noted that this study isn't definitive; at the moment, we can't make a useful comparison between the overall intelligence of the cuttlefish and the other animals that can or cannot pass some variation of the marshmallow test.</p><p>Despite this, the results are quite exciting and will likely influence future research into animal intelligence. If the common cuttlefish can pass the marshmallow test, what else can?</p>