How Memory Works
Dr. Antonio Damasio is a renowned neuroscientist who direct's the USC Brain and Creativity Institute. Before that he was the Head of Neurology at the University of Iowa Hospitals and Clinics. His research focuses on the neurobiology of mind and behavior, with an emphasis on emotion, decision-making, memory, communication, and creativity. His research has helped describe the neurological origins of emotions and has shown how emotions affect cognition and decision-making. He is the author of a number of books, including "Self Comes to Mind: Constructing the Conscious Brain," which will be published in November, 2010. Dr. Damasio is also the 2010 winner of the Honda Prize, one of the most important international awards for scientific achievement.
Dr. Damasio is a Big Think Delphi Fellow.
Question: How does the brain record memories?
Antonio Damasio: In classical ideas about how the memory records memories of events, for example, there’s the idea that the brain processes a sequence of signals and the signals come from the perceptual regions of the brain and they sort of go in one direction to higher and higher order regions of the brain, like for example, the interior temporal lobe or the interior frontal lobe. And it is there at that point that the... both, the most complex perceptions of complex events as well as the most complex memories of complex events are formed.
So, the idea is that if you are listening to somebody singing or talking and at the same time seeing the person and sort of feeling yourself sitting in a chair because you are in a concert hall, that those separate impressions are only going to come together in very high order regions of the brain and that’s where they are going to be perceived, so that’s where you’ll have your sort of, film experience with soundtrack and whatnot. And that’s also where the recording is going to be made.
And there are a lot of reasons why this cannot work this way. About 20 years ago we were dealing with this problem in that we proposed the framework in which we said, "Well, first of all, we now are beginning to know that everything that moves forward in terms of signaling in the brain, does not move just in a forward direction, but as it moves forward, there’s also a feedback loop that comes to the origin of the feed forward." So, basically, we’re dealing with loops that advance, but also can come back on their tracks to the original point. That was something that was beginning to be known and that was very interesting because it opened up possibilities about the circuitry. So this is not just in one direction, but in multiple directions that included both the forward and the backward.
And the other thing is that there was clear evidence that when you lose, as a result of damage to the brain, when you lose regions of the brain that are very high up, like interior temporal lobe, or interior frontal lobe, lo and behold, you don’t lose the possibility of having a complex perception of the world. In other worlds, your filmic experience still remains. Nor do you lose the possibility of remembering the complex perception. In fact the only thing you lose is the possibility of dating and recognizing the uniqueness of the perception.
So, that discrepancy led us to propose this idea that there was a system of convergence that went over multiple hierarchies towards certain anchor points in the brain and that what the convergence was achieving was leading signals to a certain point, the convergence/divergence zone, and what was being recorded there was not all that was happening in your filmic experience, but rather the fact that something had happened back here that had happened simultaneously in this region, this region and this region. And then by dint of the feedback, the backward projection, we would have the possibility later on of the reactivating of the entire experience.
Now, what this achieved—that’s the notion of convergence/divergence zone. I actually only first called convergence, and I remember Francis Crick telling me, “Don’t call it just convergence, that’s what people are going to remember, they will never think about the divergence part.” And then I later corrected this because he was quite right. And so, the idea is that when you are asked to remember a certain experience that you had today in which you’re talking with person A, listening to the person’s voice, but you also are in a certain context, B, which is the context of a certain room in a certain building. You are going to have the separate recordings of the voice of the person, the sight of the person, the place—but those recordings are going to be reactivated only if another recording of the simultaneity of the event has been made in a convergence/divergence zone.
And so, you send signals forward through convergence and then divergence will allow for what I call, the process of retro-activation. And the retro-activation is going to take place in different sites at the same time, approximately, or in rapid sequence at those different places. Like for example, when we replay music in our minds.
And so what this does, just to finalize the story, is create a... solve a great problem of economy. In other words, instead of having to record every event that you are going through in your life every day with every kind of person, with the books you read, the things you see and hear and touch and smell, what you need to do is record conjunctions of the occurrence of certain events. And then out of the conjunction, you can replay, you can reconstruct. And so, memory in this perspective is always reconstructive. You’re always trying to get at some approximation of what went on rather than an exact recording of what went on. And that’s where the big difference between the recording in terms of a photograph or in terms of the celluloid picture comes. We are not like that. We don’t have these... all of this celluloid or polaroid pictures filed in some place and we don’t just replay them in a screening room. We have something that is at least both far more complex, but at the same time far more economic and also to a certain extent because of its fragmented nature, far more prone to error. All of these things come into the picture.
Recorded July 2, 2010
Interviewed by David Hirschman
Instead of recording every event in your life, the brain records
conjunctions of the occurrence of certain events. Out of the conjunction, it can
then replay and reconstruct.
Big ideas.
Once a week.
Subscribe to our weekly newsletter.
Lessons from the Roman Empire about the danger of luxury
Are we enslaved by the finer things in life?
- The Roman writer, Tacitus, argued that the Roman Empire was built by enslaving conquered people who became accustomed to fine living and luxury.
- Technology today has become so essential to our daily lives that it seems impossible to break free of it. It's as much a cage as a luxury.
- Being dependent on a thing gives it power over you. To need something or someone is, for better or worse, to limit yourself.
- There was a massive die-off of marine life 359 million years ago, and nobody knows why.
- A new study proposes that the Late Devonian extinction may have been caused by one or more nearby supernovae.
- The supernova hypothesis could be confirmed if scientists can find "the green bananas of the isotope world" in the geologic record.
Your body’s full of stuff you no longer need. Here's a list.
Evolution doesn't clean up after itself very well.
- An evolutionary biologist got people swapping ideas about our lingering vestigia.
- Basically, this is the stuff that served some evolutionary purpose at some point, but now is kind of, well, extra.
- Here are the six traits that inaugurated the fun.
The plica semilunaris
<img class="rm-lazyloadable-image rm-shortcode" type="lazy-image" data-runner-src="https://assets.rebelmouse.io/eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJpbWFnZSI6Imh0dHBzOi8vYXNzZXRzLnJibC5tcy8xOTA5NjgwMS9vcmlnaW4ucG5nIiwiZXhwaXJlc19hdCI6MTY3NDg5NTg1NX0.kdBYMvaEzvCiJjcLEPgnjII_KVtT9RMEwJFuXB68D8Q/img.png?width=980" id="59914" width="429" height="350" data-rm-shortcode-id="b11e4be64c5e1f58bf4417d8548bedc7" data-rm-shortcode-name="rebelmouse-image" />The human eye in alarming detail. Image source: Henry Gray / Wikimedia commons
<p>At the inner corner of our eyes, closest to the nasal ridge, is that little pink thing, which is probably what most of us call it, called the caruncula. Next to it is the plica semilunairs, and it's what's left of a third eyelid that used to — ready for this? — blink horizontally. It's supposed to have offered protection for our eyes, and some birds, reptiles, and fish have such a thing.</p>Palmaris longus
<img class="rm-lazyloadable-image rm-shortcode" type="lazy-image" data-runner-src="https://assets.rebelmouse.io/eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJpbWFnZSI6Imh0dHBzOi8vYXNzZXRzLnJibC5tcy8xOTA5NjgwNy9vcmlnaW4uanBnIiwiZXhwaXJlc19hdCI6MTYzMzQ1NjUwMn0.dVor41tO_NeLkGY9Tx46SwqhSVaA8HZQmQAp532xLxA/img.jpg?width=980" id="879be" width="1920" height="2560" data-rm-shortcode-id="4089a32ea9fbb1a0281db14332583ccd" data-rm-shortcode-name="rebelmouse-image" />Palmaris longus muscle. Image source: Wikimedia commons
<p> We don't have much need these days, at least most of us, to navigate from tree branch to tree branch. Still, about 86 percent of us still have the wrist muscle that used to help us do it. To see if you have it, place the back of you hand on a flat surface and touch your thumb to your pinkie. If you have a muscle that becomes visible in your wrist, that's the palmaris longus. If you don't, consider yourself more evolved (just joking).</p>Darwin's tubercle
<img class="rm-lazyloadable-image rm-shortcode" type="lazy-image" data-runner-src="https://assets.rebelmouse.io/eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJpbWFnZSI6Imh0dHBzOi8vYXNzZXRzLnJibC5tcy8xOTA5NjgxMi9vcmlnaW4uanBnIiwiZXhwaXJlc19hdCI6MTY0ODUyNjA1MX0.8RuU-OSRf92wQpaPPJtvFreOVvicEwn39_jnbegiUOk/img.jpg?width=980" id="687a0" width="819" height="1072" data-rm-shortcode-id="ff5edf0a698e0681d11efde1d7872958" data-rm-shortcode-name="rebelmouse-image" />Darwin's tubercle. Image source: Wikimedia commons
<p> Yes, maybe the shell of you ear does feel like a dried apricot. Maybe not. But there's a ridge in that swirly structure that's a muscle which allowed us, at one point, to move our ears in the direction of interesting sounds. These days, we just turn our heads, but there it is.</p>Goosebumps
<img class="rm-lazyloadable-image rm-shortcode" type="lazy-image" data-runner-src="https://assets.rebelmouse.io/eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJpbWFnZSI6Imh0dHBzOi8vYXNzZXRzLnJibC5tcy8xOTA5NzMxNC9vcmlnaW4uanBnIiwiZXhwaXJlc19hdCI6MTYyNzEyNTc2Nn0.aVMa5fsKgiabW5vkr7BOvm2pmNKbLJF_50bwvd4aRo4/img.jpg?width=980" id="d8420" width="1440" height="960" data-rm-shortcode-id="8827e55511c8c3aed8c36d21b6541dbd" data-rm-shortcode-name="rebelmouse-image" />Goosebumps. Photo credit: Tyler Olson via Shutterstock
<p>It's not entirely clear what purpose made goosebumps worth retaining evolutionarily, but there are two circumstances in which they appear: fear and cold. For fear, they may have been a way of making body hair stand up so we'd appear larger to predators, much the way a cat's tail puffs up — numerous creatures exaggerate their size when threatened. In the cold, they may have trapped additional heat for warmth.</p>Tailbone
<img class="rm-lazyloadable-image rm-shortcode" type="lazy-image" data-runner-src="https://assets.rebelmouse.io/eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJpbWFnZSI6Imh0dHBzOi8vYXNzZXRzLnJibC5tcy8xOTA5NzMxNi9vcmlnaW4uanBnIiwiZXhwaXJlc19hdCI6MTY3MzQwMjc3N30.nBGAfc_O9sgyK_lOUo_MHzP1vK-9kJpohLlj9ax1P8s/img.jpg?width=980" id="9a2f6" width="1440" height="1440" data-rm-shortcode-id="4fe28368d2ed6a91a4c928d4254cc02a" data-rm-shortcode-name="rebelmouse-image" />Coccyx.
Image source: Decade3d-anatomy online via Shutterstock
<p>Way back, we had tails that probably helped us balance upright, and was useful moving through trees. We still have the stump of one when we're embryos, from 4–6 weeks, and then the body mostly dissolves it during Weeks 6–8. What's left is the coccyx.</p>The palmar grasp reflex
<img class="rm-lazyloadable-image rm-shortcode" type="lazy-image" data-runner-src="https://assets.rebelmouse.io/eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJpbWFnZSI6Imh0dHBzOi8vYXNzZXRzLnJibC5tcy8xOTA5NzMyMC9vcmlnaW4uanBnIiwiZXhwaXJlc19hdCI6MTYzNjY0MDY5NX0.OSwReKLmNZkbAS12-AvRaxgCM7zyukjQUaG4vmhxTtM/img.jpg?width=980" id="8804c" width="1440" height="960" data-rm-shortcode-id="67542ee1c5a85807b0a7e63399e44575" data-rm-shortcode-name="rebelmouse-image" />Palmar reflex activated! Photo credit: Raul Luna on Flickr
<p> You've probably seen how non-human primate babies grab onto their parents' hands to be carried around. We used to do this, too. So still, if you touch your finger to a baby's palm, or if you touch the sole of their foot, the palmar grasp reflex will cause the hand or foot to try and close around your finger.</p>Other people's suggestions
<p>Amir's followers dove right in, offering both cool and questionable additions to her list. </p>Fangs?
<blockquote class="twitter-tweet" data-conversation="none" data-lang="en"><p lang="en" dir="ltr">Lower mouth plate behind your teeth. Some have protruding bone under the skin which is a throw back to large fangs. Almost like an upsidedown Sabre Tooth.</p>— neil crud (@neilcrud66) <a href="https://twitter.com/neilcrud66/status/1085606005000601600?ref_src=twsrc%5Etfw">January 16, 2019</a></blockquote> <script async src="https://platform.twitter.com/widgets.js" charset="utf-8"></script>Hiccups
<blockquote class="twitter-tweet" data-conversation="none" data-lang="en"><p lang="en" dir="ltr">Sure: <a href="https://t.co/DjMZB1XidG">https://t.co/DjMZB1XidG</a></p>— Stephen Roughley (@SteBobRoughley) <a href="https://twitter.com/SteBobRoughley/status/1085529239556968448?ref_src=twsrc%5Etfw">January 16, 2019</a></blockquote> <script async src="https://platform.twitter.com/widgets.js" charset="utf-8"></script>Hypnic jerk as you fall asleep
<blockquote class="twitter-tweet" data-conversation="none" data-lang="en"><p lang="en" dir="ltr">What about when you “jump” just as you’re drifting off to sleep, I heard that was a reflex to prevent falling from heights.</p>— Bann face (@thebanns) <a href="https://twitter.com/thebanns/status/1085554171879788545?ref_src=twsrc%5Etfw">January 16, 2019</a></blockquote> <script async src="https://platform.twitter.com/widgets.js" charset="utf-8"></script> <p> This thing, often called the "alpha jerk" as you drop into alpha sleep, is properly called the hypnic jerk,. It may actually be a carryover from our arboreal days. The <a href="https://www.livescience.com/39225-why-people-twitch-falling-asleep.html" target="_blank" data-vivaldi-spatnav-clickable="1">hypothesis</a> is that you suddenly jerk awake to avoid falling out of your tree.</p>Nails screeching on a blackboard response?
<blockquote class="twitter-tweet" data-conversation="none" data-lang="en"><p lang="en" dir="ltr">Everyone hate the sound of fingernails on a blackboard. It's _speculated_ that this is a vestigial wiring in our head, because the sound is similar to the shrill warning call of a chimp. <a href="https://t.co/ReyZBy6XNN">https://t.co/ReyZBy6XNN</a></p>— Pet Rock (@eclogiter) <a href="https://twitter.com/eclogiter/status/1085587006258888706?ref_src=twsrc%5Etfw">January 16, 2019</a></blockquote> <script async src="https://platform.twitter.com/widgets.js" charset="utf-8"></script>Ear hair
<blockquote class="twitter-tweet" data-conversation="none" data-lang="en"><p lang="en" dir="ltr">Ok what is Hair in the ears for? I think cuz as we get older it filters out the BS.</p>— Sarah21 (@mimix3) <a href="https://twitter.com/mimix3/status/1085684393593561088?ref_src=twsrc%5Etfw">January 16, 2019</a></blockquote> <script async src="https://platform.twitter.com/widgets.js" charset="utf-8"></script>Nervous laughter
<blockquote class="twitter-tweet" data-lang="en"><p lang="en" dir="ltr">You may be onto something. Tooth-bearing with the jaw clenched is generally recognized as a signal of submission or non-threatening in primates. Involuntary smiling or laughing in tense situations might have signaled that you weren’t a threat.</p>— Jager Tusk (@JagerTusk) <a href="https://twitter.com/JagerTusk/status/1085316201104912384?ref_src=twsrc%5Etfw">January 15, 2019</a></blockquote> <script async src="https://platform.twitter.com/widgets.js" charset="utf-8"></script>Um, yipes.
<blockquote class="twitter-tweet" data-conversation="none" data-lang="en"><p lang="en" dir="ltr">Sometimes it feels like my big toe should be on the side of my foot, was that ever a thing?</p>— B033? K@($ (@whimbrel17) <a href="https://twitter.com/whimbrel17/status/1085559016011563009?ref_src=twsrc%5Etfw">January 16, 2019</a></blockquote> <script async src="https://platform.twitter.com/widgets.js" charset="utf-8"></script>Despite social pressure, boys and girls still prefer gender-typical toys
Fifty years of research on children's toy preferences shows that kids generally prefer toys oriented toward their own gender.
- A recent meta-analysis overviewed 75 studies on children's gender-related toy preferences.
- The results found that "gender-related toy preferences may be considered a well-established finding."
- It's a controversial topic: Some people argue that these preferences stem from social pressure, while others say they're at least partly rooted in biology.
