Your home could be lit by jellyfish in the future

This technology could close the gap between nature and the man-made environment.

Imagine a future lit by bioluminescent LEDs that not only use fewer of Earth's resources to manufacture, but also improve your mood by mimicking the sun throughout the day.


It could be closer than you think, according to Dr Rubén Costa, a young scientist who believes we're on the brink of a bio and nanotechnology revolution that could close the gap between nature and the man-made environment.

"What we need to do is build a bridge between these materials that we know and understand, and technologies," says the Spanish researcher in an interview with the Forum. "This will be the next revolution, I do believe."

Costa, who is on the list of MIT Technology Review's Innovators under 35, has pioneered the stabilization of light-emitting proteins found in jellyfish, outside of an aqueous solution, to create biological LEDs.

"I remember this very precise moment when we were able to peel off the rubber from the glass, put it on the UV light and it was still green," he says of his 'lightbulb' moment in 2015, when the fluorescent proteins prepared in bacteria "survived in an almost water-free medium", keeping the structure and functionality to emit light.

So excited was he by the discovery, Costa had to see a medic the following day because he'd spent too long looking at his team's creation – the fluorescent polymer – under UV light and was suffering from dry eyes: "The doctor just told me, 'Don't do it again!'"

Tackling the impossible

Jellyfish naturally glow to communicate. Jellyfish naturally glow to communicate.Image: REUTERS/Dani Cardona


Costa's research brings together the work of several Nobel prize-winning scientists. The late Japanese organic chemist and marine biologist Professor Osamu Shimomura won the Nobel Prize for Chemistry in 2008 for his discovery of Green Fluorescent Protein (GFP) in jellyfish.

Professor Martin Chalfie, who shared the prize, was able to extract the DNA that expressed the protein and genetically modify a worm to make it glow. GFPs are now used by molecular biologists to track genes.

In 2014, American electronic engineer Professor Shuji Nakamura won the Nobel Prize for Physics, together with two colleagues, for the invention of the 'efficient blue light-emitting diode' or LED, which Costa calls the "most powerful technology we have ever produced as human beings".

After hearing a talk on fluorescent proteins at a conference, Costa was intrigued by the "beautiful material" and the idea of somehow using it to power lights. The challenge of conquering 'the impossible' – stabilizing fluorescent proteins – was too much to resist.

"I never thought you could make technology with bio-compounds," he admits. "I come from a world where basically everyone is telling me bio is not stable enough. But they are very stable."

Towards sustainable LEDs

How LEDs are taking over the lighting market. Image: The Electrochemical

Society Interface

To make the white LEDs which light up our homes, mobile phones and computer screens, Nakamura's blue chip is coated with a compound to filter the strong blue light. This filter is a yellowish phosphor made from rare earth materials such as yttrium, one of the best materials for down-converting the powerful blue light.

But as LEDs increasingly dominate the global lighting industry because they're efficient, and manufacturing costs are dropping, it's predicted we're going to hit peak demand on yttrium sometime between 2019 and 2022.

That's a problem because, as its name suggests, yttrium is rare, has to be mined and only exists in certain countries, so extraction and shipping have an environmental impact.

This is where BioLEDs fit in. Once Costa's team had created the colour bio-filter – which is still glowing strong today – his thoughts turned to its advantages and applications.

"Then we moved to the next step – sustainability. The assets of proteins are that you can produce them everywhere in the world, via the bacteria E. coli, which is a patent-free technology – and it's very cheap to do."

The technology is still in development. Costa's team have taken their BioLED from 100 hours of stability to 1,700, but their target is 5,000 to 10,000 hours of light, which he believes is possible.

Help for SAD sufferers

Not only can the colour bio-filter effectively reduce the harsh blue component, the protein regenerates when you turn off the light.

Costa says: "Biological materials have one unique thing – they are able to auto-repair themselves. So you go to sleep and the protein recovers its structure."

He explains this makes it possible to modulate the colour of the LED through a spectrum to mimic the changing light of the sun over the course of a day.

"Imagine that you have the protein that in the morning is very bright on the green-yellow part, then you have another protein getting brighter on the orange part... And then you go to sleep and the green-yellowish proteins start to recover."

Costa calls it "wishful thinking", but admits they're working on an LED that can simulate sunlight and is "pretty sure" the technology would help those who suffer from Seasonal Affective Disorder (SAD) – as many as a third of people in the UK alone – in the winter months.

Solar windows

How to build a home with zero net energy consumption.

As the world tries to respond to rapid urbanization in a sustainable way – 68% of the global population will live in cities by 2050 – the colour bio-filter has another potential application.

Costa and his team have just started working on solar windows, which would have a panel of the bio-filter between two layers of glass.

The fluorescent proteins in the panel would down-convert the high-energy blue UV part of the sunlight to the low-energy orange-red part of the spectrum and move it to tiny solar cells in the corners of the windows, where a USB connection would allow you to charge up mobile phones and other devices.

The future for solar windows in the drive towards zero-energy buildings is looking bright, according to scientists in the US, who estimate five to seven billion square metres of glass surface could be used to meet 40% of the country's energy demand.

If a jellyfish can inspire so many innovations, just think what the rest of the ocean could offer us. Costa mentions the protein reflectin, which allows cuttlefish to reflect light as a form of camouflage, and the water bear, which can survive extreme temperatures and radiation.

"There are many, many applications that are already there in nature that maybe we can look at and stabilize the materials," says Costa. "The bridge from nature to technology is what we need."

--

Reprinted with permission of World Economic Forum. Read the original article here.

Cambridge scientists create a successful "vaccine" against fake news

A large new study uses an online game to inoculate people against fake news.

University of Cambridge
Politics & Current Affairs
  • Researchers from the University of Cambridge use an online game to inoculate people against fake news.
  • The study sample included 15,000 players.
  • The scientists hope to use such tactics to protect whole societies against disinformation.
Keep reading Show less

Yale scientists restore brain function to 32 clinically dead pigs

Researchers hope the technology will further our understanding of the brain, but lawmakers may not be ready for the ethical challenges.

Still from John Stephenson's 1999 rendition of Animal Farm.
Surprising Science
  • Researchers at the Yale School of Medicine successfully restored some functions to pig brains that had been dead for hours.
  • They hope the technology will advance our understanding of the brain, potentially developing new treatments for debilitating diseases and disorders.
  • The research raises many ethical questions and puts to the test our current understanding of death.

The image of an undead brain coming back to live again is the stuff of science fiction. Not just any science fiction, specifically B-grade sci fi. What instantly springs to mind is the black-and-white horrors of films like Fiend Without a Face. Bad acting. Plastic monstrosities. Visible strings. And a spinal cord that, for some reason, is also a tentacle?

But like any good science fiction, it's only a matter of time before some manner of it seeps into our reality. This week's Nature published the findings of researchers who managed to restore function to pigs' brains that were clinically dead. At least, what we once thought of as dead.

What's dead may never die, it seems

The researchers did not hail from House Greyjoy — "What is dead may never die" — but came largely from the Yale School of Medicine. They connected 32 pig brains to a system called BrainEx. BrainEx is an artificial perfusion system — that is, a system that takes over the functions normally regulated by the organ. The pigs had been killed four hours earlier at a U.S. Department of Agriculture slaughterhouse; their brains completely removed from the skulls.

BrainEx pumped an experiment solution into the brain that essentially mimic blood flow. It brought oxygen and nutrients to the tissues, giving brain cells the resources to begin many normal functions. The cells began consuming and metabolizing sugars. The brains' immune systems kicked in. Neuron samples could carry an electrical signal. Some brain cells even responded to drugs.

The researchers have managed to keep some brains alive for up to 36 hours, and currently do not know if BrainEx can have sustained the brains longer. "It is conceivable we are just preventing the inevitable, and the brain won't be able to recover," said Nenad Sestan, Yale neuroscientist and the lead researcher.

As a control, other brains received either a fake solution or no solution at all. None revived brain activity and deteriorated as normal.

The researchers hope the technology can enhance our ability to study the brain and its cellular functions. One of the main avenues of such studies would be brain disorders and diseases. This could point the way to developing new of treatments for the likes of brain injuries, Alzheimer's, Huntington's, and neurodegenerative conditions.

"This is an extraordinary and very promising breakthrough for neuroscience. It immediately offers a much better model for studying the human brain, which is extraordinarily important, given the vast amount of human suffering from diseases of the mind [and] brain," Nita Farahany, the bioethicists at the Duke University School of Law who wrote the study's commentary, told National Geographic.

An ethical gray matter

Before anyone gets an Island of Dr. Moreau vibe, it's worth noting that the brains did not approach neural activity anywhere near consciousness.

The BrainEx solution contained chemicals that prevented neurons from firing. To be extra cautious, the researchers also monitored the brains for any such activity and were prepared to administer an anesthetic should they have seen signs of consciousness.

Even so, the research signals a massive debate to come regarding medical ethics and our definition of death.

Most countries define death, clinically speaking, as the irreversible loss of brain or circulatory function. This definition was already at odds with some folk- and value-centric understandings, but where do we go if it becomes possible to reverse clinical death with artificial perfusion?

"This is wild," Jonathan Moreno, a bioethicist at the University of Pennsylvania, told the New York Times. "If ever there was an issue that merited big public deliberation on the ethics of science and medicine, this is one."

One possible consequence involves organ donations. Some European countries require emergency responders to use a process that preserves organs when they cannot resuscitate a person. They continue to pump blood throughout the body, but use a "thoracic aortic occlusion balloon" to prevent that blood from reaching the brain.

The system is already controversial because it raises concerns about what caused the patient's death. But what happens when brain death becomes readily reversible? Stuart Younger, a bioethicist at Case Western Reserve University, told Nature that if BrainEx were to become widely available, it could shrink the pool of eligible donors.

"There's a potential conflict here between the interests of potential donors — who might not even be donors — and people who are waiting for organs," he said.

It will be a while before such experiments go anywhere near human subjects. A more immediate ethical question relates to how such experiments harm animal subjects.

Ethical review boards evaluate research protocols and can reject any that causes undue pain, suffering, or distress. Since dead animals feel no pain, suffer no trauma, they are typically approved as subjects. But how do such boards make a judgement regarding the suffering of a "cellularly active" brain? The distress of a partially alive brain?

The dilemma is unprecedented.

Setting new boundaries

Another science fiction story that comes to mind when discussing this story is, of course, Frankenstein. As Farahany told National Geographic: "It is definitely has [sic] a good science-fiction element to it, and it is restoring cellular function where we previously thought impossible. But to have Frankenstein, you need some degree of consciousness, some 'there' there. [The researchers] did not recover any form of consciousness in this study, and it is still unclear if we ever could. But we are one step closer to that possibility."

She's right. The researchers undertook their research for the betterment of humanity, and we may one day reap some unimaginable medical benefits from it. The ethical questions, however, remain as unsettling as the stories they remind us of.

5 facts you should know about the world’s refugees

Many governments do not report, or misreport, the numbers of refugees who enter their country.

David McNew/Getty Images
Politics & Current Affairs

Conflict, violence, persecution and human rights violations led to a record high of 70.8 million people being displaced by the end of 2018.

Keep reading Show less